An Alternate Approach to Friction Factor Computations Based on Entropy Generation in Gas Micro Flows

IRPN: Science Pub Date : 2017-12-21 DOI:10.2139/ssrn.3101266
S. Prabhu, S. Mahulikar
{"title":"An Alternate Approach to Friction Factor Computations Based on Entropy Generation in Gas Micro Flows","authors":"S. Prabhu, S. Mahulikar","doi":"10.2139/ssrn.3101266","DOIUrl":null,"url":null,"abstract":"The gas micro flows are deployed in heat-sinks of many practical micro devices, and cooling systems for gas turbine blades etc. In present study, fluid friction characteristics of laminar micro flow, operating at low Reynolds number, are studied. This flow model is representative of fluid flows in many micro device applications. Fanning friction factor computations were re-modeled using ‘entropy generation’ and ‘axial temperature rise’ in the flow domain. Entropy generation considerations and adiabatic wall boundary condition isolate viscous dissipation effects from other causes of heating. Navier-Stoke and energy equations were numerically solved for constant properties gas (air) flow in circular micro pipe using ANSYS/FLUENT® software and post processing in C++. The results of present study show good agreement with the well established classical Hagen-Poiseuille correlations, experimentally validated methods of Morini, and Celata et al. Present method is useful where the laboratory facilities for micro flow experiments are not available.","PeriodicalId":198407,"journal":{"name":"IRPN: Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3101266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The gas micro flows are deployed in heat-sinks of many practical micro devices, and cooling systems for gas turbine blades etc. In present study, fluid friction characteristics of laminar micro flow, operating at low Reynolds number, are studied. This flow model is representative of fluid flows in many micro device applications. Fanning friction factor computations were re-modeled using ‘entropy generation’ and ‘axial temperature rise’ in the flow domain. Entropy generation considerations and adiabatic wall boundary condition isolate viscous dissipation effects from other causes of heating. Navier-Stoke and energy equations were numerically solved for constant properties gas (air) flow in circular micro pipe using ANSYS/FLUENT® software and post processing in C++. The results of present study show good agreement with the well established classical Hagen-Poiseuille correlations, experimentally validated methods of Morini, and Celata et al. Present method is useful where the laboratory facilities for micro flow experiments are not available.
气体微流动中基于熵生成的摩擦因数计算方法
气体微流动应用于许多实用微型装置的散热片和燃气轮机叶片的冷却系统等。本文对低雷诺数层流微流的流体摩擦特性进行了研究。这种流动模型是许多微设备应用中流体流动的代表。风扇摩擦系数的计算使用“熵生成”和“轴向温升”在流域重新建模。熵生成的考虑和绝热壁边界条件将粘滞耗散效应与其他加热原因隔离开来。采用ANSYS/FLUENT®软件,在C++中进行后处理,对圆形微管中恒定性质气体(空气)流动的Navier-Stoke方程和能量方程进行了数值求解。本研究结果与经典的Hagen-Poiseuille关联、Morini和Celata等人的实验验证方法有很好的一致性。本方法适用于没有实验室设备进行微流实验的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信