{"title":"Advanced developments in NiH/sub 2/ Dependent Pressure Vessel (DPV) cell and battery technology","authors":"D. Caldwell, C. Fox","doi":"10.1109/BCAA.1997.574120","DOIUrl":null,"url":null,"abstract":"The Dependent Pressure Vessel (DPV) nickel-hydrogen (NiH/sub 2/) design is being developed by Eagle-Picher Industries, Inc. (EPI) as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced parts count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risks.","PeriodicalId":344507,"journal":{"name":"The Twelfth Annual Battery Conference on Applications and Advances","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Twelfth Annual Battery Conference on Applications and Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCAA.1997.574120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Dependent Pressure Vessel (DPV) nickel-hydrogen (NiH/sub 2/) design is being developed by Eagle-Picher Industries, Inc. (EPI) as an advanced battery for military and commercial, aerospace and terrestrial applications. The DPV cell design offers high specific energy and energy density as well as reduced cost, while retaining the established Individual Pressure Vessel (IPV) technology flight heritage and database. This advanced DPV design also offers a more efficient mechanical, electrical and thermal cell and battery configuration and a reduced parts count. The DPV battery design promotes compact, minimum volume packaging and weight efficiency, and delivers cost and weight savings with minimal design risks.