Color face recognition: A multilinear-PCA approach combined with Hidden Markov Models

D. Alexiadis, Dimitrios P. Glaroudis
{"title":"Color face recognition: A multilinear-PCA approach combined with Hidden Markov Models","authors":"D. Alexiadis, Dimitrios P. Glaroudis","doi":"10.5220/0003445501130119","DOIUrl":null,"url":null,"abstract":"Hidden Markov Models (HMMs) have been successfully applied to the face recognition problem. However, existing HMM-based techniques use feature (observation) vectors that are extracted only from the images' luminance component, while it is known that color provides significant information. In contrast to the classical PCA approach, Multilinear PCA (MPCA) seems to be an appropriate scheme for dimensionality reduction and feature extraction from color images, handling the color channels in a natural, “holistic” manner. In this paper, we propose an MPCA-based approach for color face recognition, that exploits the strengths of HMMs as classifiers. The proposed methodology was tested on three publicly available color databases and produced high recognition rates, compared to existing HMM-based methodologies.","PeriodicalId":103791,"journal":{"name":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Signal Processing and Multimedia Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003445501130119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Hidden Markov Models (HMMs) have been successfully applied to the face recognition problem. However, existing HMM-based techniques use feature (observation) vectors that are extracted only from the images' luminance component, while it is known that color provides significant information. In contrast to the classical PCA approach, Multilinear PCA (MPCA) seems to be an appropriate scheme for dimensionality reduction and feature extraction from color images, handling the color channels in a natural, “holistic” manner. In this paper, we propose an MPCA-based approach for color face recognition, that exploits the strengths of HMMs as classifiers. The proposed methodology was tested on three publicly available color databases and produced high recognition rates, compared to existing HMM-based methodologies.
彩色人脸识别:一种结合隐马尔可夫模型的多线性pca方法
隐马尔可夫模型已经成功地应用于人脸识别问题。然而,现有的基于hmm的技术使用的特征(观察)向量仅从图像的亮度分量中提取,而众所周知,颜色提供了重要的信息。与传统的主成分分析方法相比,多线性主成分分析(MPCA)似乎是一种适合于彩色图像降维和特征提取的方案,以一种自然的、“整体”的方式处理颜色通道。在本文中,我们提出了一种基于mpca的彩色人脸识别方法,利用hmm作为分类器的优势。与现有的基于hmm的方法相比,所提出的方法在三个公开可用的颜色数据库上进行了测试,并产生了较高的识别率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信