Deep learning for classification of sleep EEG data during the epidemic of Coronavirus Disease

Bin Zhao
{"title":"Deep learning for classification of sleep EEG data during the epidemic of Coronavirus Disease","authors":"Bin Zhao","doi":"10.31579/2766-2314/010","DOIUrl":null,"url":null,"abstract":"Sleep is an important part of the body's recuperation and energy accumulation, and the quality of sleep also has a significant impact on people's physical and mental state during the epidemic of Coronavirus Disease. It has attracted increasing attention how to improve the quality of sleep and reduce the impact of sleep related diseases on health. The electroencephalogram (EEG) signals collected during sleep belong to spontaneous EEG signals. Spontaneous sleep EEG signals can reflect the body own changes, which is also an important basis for diagnosis and treatment of related diseases. Therefore, the establishment of an effective model for classifying sleep EEG signals is an important auxiliary tool for evaluating sleep.","PeriodicalId":220919,"journal":{"name":"Biotechnology and Bioprocessing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocessing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31579/2766-2314/010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep is an important part of the body's recuperation and energy accumulation, and the quality of sleep also has a significant impact on people's physical and mental state during the epidemic of Coronavirus Disease. It has attracted increasing attention how to improve the quality of sleep and reduce the impact of sleep related diseases on health. The electroencephalogram (EEG) signals collected during sleep belong to spontaneous EEG signals. Spontaneous sleep EEG signals can reflect the body own changes, which is also an important basis for diagnosis and treatment of related diseases. Therefore, the establishment of an effective model for classifying sleep EEG signals is an important auxiliary tool for evaluating sleep.
冠状病毒流行期间睡眠脑电数据的深度学习分类
睡眠是人体休养生息、蓄积能量的重要环节,在冠状病毒疫情期间,睡眠质量对人的身心状态也有显著影响。如何提高睡眠质量,减少睡眠相关疾病对健康的影响越来越受到人们的关注。睡眠过程中采集到的脑电图信号属于自发性脑电图信号。自发性睡眠脑电图信号能反映机体自身的变化,也是相关疾病诊断和治疗的重要依据。因此,建立有效的睡眠脑电信号分类模型是评估睡眠的重要辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信