New algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in high-Tc superconductors

G. Alvarez, M. Summers, Don E. Maxwell, M. Eisenbach, J. Meredith, J. Larkin, J. Levesque, T. Maier, P. Kent, E. D'Azevedo, T. Schulthess
{"title":"New algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in high-Tc superconductors","authors":"G. Alvarez, M. Summers, Don E. Maxwell, M. Eisenbach, J. Meredith, J. Larkin, J. Levesque, T. Maier, P. Kent, E. D'Azevedo, T. Schulthess","doi":"10.1109/SC.2008.5218119","DOIUrl":null,"url":null,"abstract":"Staggering computational and algorithmic advances in recent years now make possible systematic Quantum Monte Carlo (QMC) simulations of high temperature (high-Tc) superconductivity in a microscopic model, the two dimensional (2D) Hubbard model, with parameters relevant to the cuprate materials. Here we report the algorithmic and computational advances that enable us to study the effect of disorder and nano-scale inhomogeneities on the pair-formation and the superconducting transition temperature necessary to understand real materials. The simulation code is written with a generic and extensible approach and is tuned to perform well at scale. Significant algorithmic improvements have been made to make effective use of current supercomputing architectures. By implementing delayed Monte Carlo updates and a mixed single-/double precision mode, we are able to dramatically increase the efficiency of the code. On the Cray XT4 systems of the Oak Ridge National Laboratory (ORNL), for example, we currently run production jobs on 31 thousand processors and thereby routinely achieve a sustained performance that exceeds 200 TFlop/s. On a system with 49 thousand processors we achieved a sustained performance of 409 TFlop/s. We present a study of how random disorder in the effective Coulomb interaction strength affects the superconducting transition temperature in the Hubbard model.","PeriodicalId":230761,"journal":{"name":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2008.5218119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Staggering computational and algorithmic advances in recent years now make possible systematic Quantum Monte Carlo (QMC) simulations of high temperature (high-Tc) superconductivity in a microscopic model, the two dimensional (2D) Hubbard model, with parameters relevant to the cuprate materials. Here we report the algorithmic and computational advances that enable us to study the effect of disorder and nano-scale inhomogeneities on the pair-formation and the superconducting transition temperature necessary to understand real materials. The simulation code is written with a generic and extensible approach and is tuned to perform well at scale. Significant algorithmic improvements have been made to make effective use of current supercomputing architectures. By implementing delayed Monte Carlo updates and a mixed single-/double precision mode, we are able to dramatically increase the efficiency of the code. On the Cray XT4 systems of the Oak Ridge National Laboratory (ORNL), for example, we currently run production jobs on 31 thousand processors and thereby routinely achieve a sustained performance that exceeds 200 TFlop/s. On a system with 49 thousand processors we achieved a sustained performance of 409 TFlop/s. We present a study of how random disorder in the effective Coulomb interaction strength affects the superconducting transition temperature in the Hubbard model.
新算法使400+ TFlop/s持续性能在模拟高tc超导体的无序效应
近年来惊人的计算和算法进步使得系统的量子蒙特卡罗(QMC)模拟高温(高tc)超导的微观模型,二维(2D)哈伯德模型,与铜材料相关的参数成为可能。在这里,我们报告了算法和计算的进步,使我们能够研究无序和纳米尺度的不均匀性对对形成和超导转变温度的影响,这是理解真实材料所必需的。模拟代码是用一种通用的、可扩展的方法编写的,并且经过调优,可以在规模上表现良好。为了有效地利用当前的超级计算架构,已经对算法进行了重大改进。通过实现延迟蒙特卡罗更新和混合单/双精度模式,我们能够显著提高代码的效率。例如,在橡树岭国家实验室(ORNL)的Cray XT4系统上,我们目前在31000个处理器上运行生产作业,从而经常实现超过200 TFlop/s的持续性能。在一个拥有4.9万个处理器的系统上,我们实现了409 TFlop/s的持续性能。我们研究了有效库仑相互作用强度的随机无序如何影响Hubbard模型中的超导转变温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信