Unsupervised Machine Learning for Sweet-Spot Identification Within an Unconventional Carbonate Mudstone

Septriandi A. Chan, A. Amao, John T. Humphrey, Yaser Alzayer
{"title":"Unsupervised Machine Learning for Sweet-Spot Identification Within an Unconventional Carbonate Mudstone","authors":"Septriandi A. Chan, A. Amao, John T. Humphrey, Yaser Alzayer","doi":"10.2118/213353-ms","DOIUrl":null,"url":null,"abstract":"\n Stratigraphic correlation in mudstone intervals is challenging as compared to coarser-grained sedimentary rocks because of the microscale heterogeneity and other constraints. Given critical mm- to cm-scale variability in mudstones, it is daunting to try to infer compositional variability from well logs and seismic data unless core data and laboratory analyses are available to calibrate the results. In this study, we propose a novel integrated approach combining sedimentological core description with geochemical data to establish chemofacies and chemostratigraphic zonation using a set of unsupervised statistical tools, i.e., Principal Component Analysis (PCA) and Hierarchical Clustering on Principal Components (HCPC).\n These techniques can be applied to elemental data acquired using x-ray fluorescence measured from core or cuttings samples or spectroscopy logs to provide robust analysis for unconventional assessment regarding sweet-spot identification, sequence stratigraphic interpretations, and drilling and completion designs. Further, the identified zones can be used to characterize/correlate zones in nearby un-cored wells, with the data generated serving as an indispensable input for establishing a well-log data zonation using unsupervised machine learning algorithms.","PeriodicalId":249245,"journal":{"name":"Day 2 Mon, February 20, 2023","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, February 20, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/213353-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stratigraphic correlation in mudstone intervals is challenging as compared to coarser-grained sedimentary rocks because of the microscale heterogeneity and other constraints. Given critical mm- to cm-scale variability in mudstones, it is daunting to try to infer compositional variability from well logs and seismic data unless core data and laboratory analyses are available to calibrate the results. In this study, we propose a novel integrated approach combining sedimentological core description with geochemical data to establish chemofacies and chemostratigraphic zonation using a set of unsupervised statistical tools, i.e., Principal Component Analysis (PCA) and Hierarchical Clustering on Principal Components (HCPC). These techniques can be applied to elemental data acquired using x-ray fluorescence measured from core or cuttings samples or spectroscopy logs to provide robust analysis for unconventional assessment regarding sweet-spot identification, sequence stratigraphic interpretations, and drilling and completion designs. Further, the identified zones can be used to characterize/correlate zones in nearby un-cored wells, with the data generated serving as an indispensable input for establishing a well-log data zonation using unsupervised machine learning algorithms.
非常规碳酸盐泥岩甜点识别的无监督机器学习
与粗粒沉积岩相比,泥岩层段的地层对比具有挑战性,因为泥岩具有微尺度的非均质性和其他限制条件。考虑到泥岩在毫米到厘米尺度上的可变性,除非有岩心数据和实验室分析来校准结果,否则很难从测井和地震数据中推断出泥岩成分的可变性。在这项研究中,我们提出了一种新的综合方法,将沉积岩心描述与地球化学数据相结合,利用一套无监督统计工具,即主成分分析(PCA)和主成分分层聚类(HCPC),建立化学相和化学地层分带。这些技术可以应用于从岩心或岩屑样品或光谱测井中通过x射线荧光测量获得的元素数据,为甜点识别、层序地层解释以及钻完井设计等非常规评估提供可靠的分析。此外,识别的区域可用于描述附近未取心井的区域特征/关联,生成的数据可作为使用无监督机器学习算法建立测井数据分区的不可或缺的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信