{"title":"A Universal Bubble-Growth Equation for Pure Liquids and Binary Solutions With a Non-Volatile Solute","authors":"O. Miyatake, Itsuo Tanaka, N. Lior","doi":"10.1115/imece1996-0125","DOIUrl":null,"url":null,"abstract":"\n A simple equation suitable for predicting the growth rate of a vapor bubble in uniformly-superheated pure liquids and in binary solutions with a non-volatile solute was developed. The equation also improves on the popular pure-liquid bubble growth expression of Mikić et al. (1970) in that it is valid throughout the bubble growth history, i. e. in the surface-tension-, inertia-, and heat-transfer-controlled regimes, it accounts for bubble growth acceleration effects, and uses correctly-related and variable fluid properties. It was found to agree very well with experimental data for pure water and for aqueous NaCl solutions As the bubble growth in superheated solutions with a non-volatile solute was found to be quite insensitive to diffusion and non-equilibrium effects in a broad range of common solution properties, this equation is likely to be universally valid for many liquids and solutions.","PeriodicalId":324954,"journal":{"name":"Heat Transfer: Volume 3 — Experimental Studies in Multiphase Flow; Multiphase Flow in Porous Media; Experimental Multiphase Flows and Numerical Simulation of Two-Phase Flows; Fundamental Aspects of Experimental Methods","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3 — Experimental Studies in Multiphase Flow; Multiphase Flow in Porous Media; Experimental Multiphase Flows and Numerical Simulation of Two-Phase Flows; Fundamental Aspects of Experimental Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece1996-0125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A simple equation suitable for predicting the growth rate of a vapor bubble in uniformly-superheated pure liquids and in binary solutions with a non-volatile solute was developed. The equation also improves on the popular pure-liquid bubble growth expression of Mikić et al. (1970) in that it is valid throughout the bubble growth history, i. e. in the surface-tension-, inertia-, and heat-transfer-controlled regimes, it accounts for bubble growth acceleration effects, and uses correctly-related and variable fluid properties. It was found to agree very well with experimental data for pure water and for aqueous NaCl solutions As the bubble growth in superheated solutions with a non-volatile solute was found to be quite insensitive to diffusion and non-equilibrium effects in a broad range of common solution properties, this equation is likely to be universally valid for many liquids and solutions.