Computing column bases of polynomial matrices

Wei Zhou, G. Labahn
{"title":"Computing column bases of polynomial matrices","authors":"Wei Zhou, G. Labahn","doi":"10.1145/2465506.2465947","DOIUrl":null,"url":null,"abstract":"Given a matrix of univariate polynomials over a field <i>K</i>, its columns generate a <i>K</i>[<i>x</i>]-module. We call any basis of this module a column basis of the given matrix. Matrix gcds and matrix normal forms are examples of such module bases. In this paper we present a deterministic algorithm for the computation of a column basis of an <i>m</i> x <i>n</i> input matrix with <i>m</i> ≤ <i>n</i>. If <i>s</i> is the average column degree of the input matrix, this algorithm computes a column basis with a cost of Õ(<i>nm</i><sup>ω-1</sup>s) field operations in <i>K</i>. Here the soft-<i>O</i> notation is Big-<i>O</i> with log factors removed while ω is the exponent of matrix multiplication. Note that the average column degree <i>s</i> is bounded by the commonly used matrix degree that is also the maximum column degree of the input matrix.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465506.2465947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Given a matrix of univariate polynomials over a field K, its columns generate a K[x]-module. We call any basis of this module a column basis of the given matrix. Matrix gcds and matrix normal forms are examples of such module bases. In this paper we present a deterministic algorithm for the computation of a column basis of an m x n input matrix with mn. If s is the average column degree of the input matrix, this algorithm computes a column basis with a cost of Õ(nmω-1s) field operations in K. Here the soft-O notation is Big-O with log factors removed while ω is the exponent of matrix multiplication. Note that the average column degree s is bounded by the commonly used matrix degree that is also the maximum column degree of the input matrix.
计算多项式矩阵的列基
给定域K上的单变量多项式矩阵,其列生成K[x]-模块。我们称这个模块的任意一组基为给定矩阵的列基。矩阵gcd和矩阵范式就是这种模基的例子。本文提出了m≤n输入矩阵的列基计算的一种确定性算法。如果s是输入矩阵的平均列度,则该算法计算列基的代价为Õ(nmω-1s) k中的场运算,这里的软o符号是去掉对数因子的大o,而ω是矩阵乘法的指数。注意,平均列度s由常用的矩阵度限定,该矩阵度也是输入矩阵的最大列度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信