KAJIAN KEKONVERGENAN LEMAH DI RUANG HILBERT

Abubakar Sidiq M.Hasbi
{"title":"KAJIAN KEKONVERGENAN LEMAH DI RUANG HILBERT","authors":"Abubakar Sidiq M.Hasbi","doi":"10.59098/mega.v3i1.677","DOIUrl":null,"url":null,"abstract":"We have the sequence , where  a norm space. We have a dual space   too is the collection of linier and continous functional from norm space  into riil number system . If for all the sequence  convergent to    and    then   convergent to . The converse of this implication is not applicable . This study aims to explain the properties that apply to the ranks of the weak convergent and explain the relationship between the strong convergent sequence and the weak convergent sequence. From several reference sources then through the review process obtained weak nature of singularity limit sequence  and relationship between the strong convergent sequence and the weak convergent sequence that if  the sequence  is strong convergent therefore the sequence it weak convergent. ","PeriodicalId":153921,"journal":{"name":"MEGA: Jurnal Pendidikan Matematika","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MEGA: Jurnal Pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59098/mega.v3i1.677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We have the sequence , where  a norm space. We have a dual space   too is the collection of linier and continous functional from norm space  into riil number system . If for all the sequence  convergent to    and    then   convergent to . The converse of this implication is not applicable . This study aims to explain the properties that apply to the ranks of the weak convergent and explain the relationship between the strong convergent sequence and the weak convergent sequence. From several reference sources then through the review process obtained weak nature of singularity limit sequence  and relationship between the strong convergent sequence and the weak convergent sequence that if  the sequence  is strong convergent therefore the sequence it weak convergent. 
我们有一个序列,其中有一个范数空间。对偶空间是从范数空间到里尔数系统的线性和连续泛函的集合。如果对所有序列收敛于,然后收敛于。这个含义的反面是不适用的。本研究旨在解释适用于弱收敛序列的性质,并解释强收敛序列与弱收敛序列之间的关系。然后通过复习过程,从几个参考资料中得到了奇异极限序列的弱性质以及强收敛序列与弱收敛序列之间的关系,即如果序列是强收敛的,那么序列就是弱收敛的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信