Partial Identification and Inference in Duration Models with Endogenous Censoring

Shosei Sakaguchi
{"title":"Partial Identification and Inference in Duration Models with Endogenous Censoring","authors":"Shosei Sakaguchi","doi":"10.2139/ssrn.3443101","DOIUrl":null,"url":null,"abstract":"This paper studies identification and inference in transformation models with endogenous censoring. Many kinds of duration models, such as the accelerated failure time model, proportional hazard model, and mixed proportional hazard model, can be viewed as transformation models. I allow the censoring of duration outcome to be arbitrarily correlated with observed covariates and unobserved heterogeneity. I impose no parametric restrictions on the transformation function or the distribution function of the unobserved heterogeneity. In this setting, I partially identify the regression parameters and the transformation function, which are characterized by conditional moment inequalities of U-statistics. I provide an inference method for them by constructing an inference approach for the conditional moment inequality models of U-statistics. As an empirical illustration, I apply the proposed inference method to evaluate the effect of heart transplants on patients' survival time using data from the Stanford Heart Transplant Study.","PeriodicalId":226395,"journal":{"name":"Medical Education eJournal","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Education eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3443101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies identification and inference in transformation models with endogenous censoring. Many kinds of duration models, such as the accelerated failure time model, proportional hazard model, and mixed proportional hazard model, can be viewed as transformation models. I allow the censoring of duration outcome to be arbitrarily correlated with observed covariates and unobserved heterogeneity. I impose no parametric restrictions on the transformation function or the distribution function of the unobserved heterogeneity. In this setting, I partially identify the regression parameters and the transformation function, which are characterized by conditional moment inequalities of U-statistics. I provide an inference method for them by constructing an inference approach for the conditional moment inequality models of U-statistics. As an empirical illustration, I apply the proposed inference method to evaluate the effect of heart transplants on patients' survival time using data from the Stanford Heart Transplant Study.
基于内生过滤的持续时间模型的部分识别与推理
本文研究了带有内生审查的转换模型的识别和推理。加速失效时间模型、比例风险模型、混合比例风险模型等多种持续时间模型都可以看作是转换模型。我允许对持续时间结果的审查与观察到的协变量和未观察到的异质性任意相关。我没有对未观测异质性的变换函数或分布函数施加参数限制。在这种情况下,我部分地确定了回归参数和转换函数,它们的特征是u统计量的条件矩不等式。通过构造u统计的条件矩不等式模型的推理方法,为它们提供了一种推理方法。作为实证说明,我使用斯坦福心脏移植研究的数据,应用所提出的推理方法来评估心脏移植对患者生存时间的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信