Convergence of Stochastic PDMM

Sebastian O. Jordan, Thomas W. Sherson, R. Heusdens
{"title":"Convergence of Stochastic PDMM","authors":"Sebastian O. Jordan, Thomas W. Sherson, R. Heusdens","doi":"10.1109/ICASSP49357.2023.10095808","DOIUrl":null,"url":null,"abstract":"In recent years, the large increase in connected devices and the data that are collected by these devices have caused a heightened interest in distributed processing. Many practical distributed networks are of heterogeneous nature, because different devices in the network can have different specifications. Because of this, it is highly desirable that algorithms operating within these networks can operate asynchronously, since in that case there is no need for clock synchronisation between the nodes, and the algorithm is not slowed down by the slowest device in the network. In this paper, we focus on the primal-dual method of multipliers (PDMM), which is a promising distributed optimisation algorithm that is suitable for distributed optimisation in heterogeneous networks. Most theoretical work that can be found in existing literature focuses on synchronous versions of PDMM. In this work, we prove the convergence of stochastic PDMM, which is a general framework that can model variations such as asynchronous PDMM and PDMM with transmission losses.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10095808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, the large increase in connected devices and the data that are collected by these devices have caused a heightened interest in distributed processing. Many practical distributed networks are of heterogeneous nature, because different devices in the network can have different specifications. Because of this, it is highly desirable that algorithms operating within these networks can operate asynchronously, since in that case there is no need for clock synchronisation between the nodes, and the algorithm is not slowed down by the slowest device in the network. In this paper, we focus on the primal-dual method of multipliers (PDMM), which is a promising distributed optimisation algorithm that is suitable for distributed optimisation in heterogeneous networks. Most theoretical work that can be found in existing literature focuses on synchronous versions of PDMM. In this work, we prove the convergence of stochastic PDMM, which is a general framework that can model variations such as asynchronous PDMM and PDMM with transmission losses.
随机PDMM的收敛性
近年来,连接设备和这些设备收集的数据的大量增加引起了人们对分布式处理的高度兴趣。许多实际的分布式网络具有异构性,因为网络中的不同设备可能具有不同的规格。正因为如此,在这些网络中运行的算法可以异步运行是非常理想的,因为在这种情况下,节点之间不需要时钟同步,并且算法不会被网络中最慢的设备减慢。本文重点研究了乘法器的原对偶方法(PDMM),它是一种很有前途的分布式优化算法,适用于异构网络中的分布式优化。现有文献中可以找到的大多数理论工作都集中在PDMM的同步版本上。在这项工作中,我们证明了随机PDMM的收敛性,它是一个通用的框架,可以模拟诸如异步PDMM和具有传输损耗的PDMM的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信