Preconditioned Random Forest Regression: Application to Genome-Wide Study for Radiotherapy Toxicity Prediction

Sangkyun Lee, S. Kerns, B. Rosenstein, H. Ostrer, J. Deasy, J. Oh
{"title":"Preconditioned Random Forest Regression: Application to Genome-Wide Study for Radiotherapy Toxicity Prediction","authors":"Sangkyun Lee, S. Kerns, B. Rosenstein, H. Ostrer, J. Deasy, J. Oh","doi":"10.1145/3107411.3108201","DOIUrl":null,"url":null,"abstract":"Urinary toxicity after radiotherapy (RT) limits the quality of life of prostate cancer patients, and clinically actionable prediction has yet to be achieved. We aim to exploit genome-wide variants to accurately identify patients at higher congenital toxicity risk. We applied preconditioned random forest regression (PRFR) to predict four urinary symptoms. For a weak stream endpoint, the PRFR model achieved an area under the curve (AUC) of 0.7 on holdout validation. Preconditioning enhanced the performance of random forest. Gene ontology (GO) analysis showed that neurogenic biological processes are associated with the toxicity. Upon further validation, the predictive model can be used to potentially benefit the health of prostate cancer patients treated with radiotherapy.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Urinary toxicity after radiotherapy (RT) limits the quality of life of prostate cancer patients, and clinically actionable prediction has yet to be achieved. We aim to exploit genome-wide variants to accurately identify patients at higher congenital toxicity risk. We applied preconditioned random forest regression (PRFR) to predict four urinary symptoms. For a weak stream endpoint, the PRFR model achieved an area under the curve (AUC) of 0.7 on holdout validation. Preconditioning enhanced the performance of random forest. Gene ontology (GO) analysis showed that neurogenic biological processes are associated with the toxicity. Upon further validation, the predictive model can be used to potentially benefit the health of prostate cancer patients treated with radiotherapy.
预条件随机森林回归:在放疗毒性预测全基因组研究中的应用
放疗后尿毒性(RT)限制了前列腺癌患者的生活质量,临床可行的预测尚未实现。我们的目标是利用全基因组变异来准确识别具有较高先天性毒性风险的患者。我们应用预条件随机森林回归(PRFR)预测四种泌尿系统症状。对于弱流端点,PRFR模型在holdout验证时实现了0.7的曲线下面积(AUC)。预处理提高了随机森林的性能。基因本体论(GO)分析表明,神经源性生物学过程与毒性有关。在进一步验证后,该预测模型可用于潜在地有益于前列腺癌放疗患者的健康。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信