Jiaqing Zhang, Yong Zhang, Xiaodong Xu, Zhengqing Wu, Bin Ye
{"title":"An Autonomous Fire-fighting Robot with Ackermann Steering Mechanism","authors":"Jiaqing Zhang, Yong Zhang, Xiaodong Xu, Zhengqing Wu, Bin Ye","doi":"10.1109/RCAR54675.2022.9872258","DOIUrl":null,"url":null,"abstract":"Fire prevention and control has always been a topic of concern. Autonomous fire-fighting robot can replace firefighters to complete this dangerous task, which improves work efficiency and ensure work safety to a certain extent. Considering the large volume and weight of the fire-fighting robot, the Ackermann steering mechanism is suitable for the chassis of the robot. This paper focus on the design of the autonomous fire-fighting robot using the Ackermann type of chassis. According to the kinematics of the Ackermann structure, this paper use TEB local path planning algorithm and AMCL positioning algorithm to form a navigation framework to complete the autonomous positioning and navigation of the firefighting robot. At last, a simulation environment is built and the proposed scheme are well demonstrated by the experimental results.","PeriodicalId":304963,"journal":{"name":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Real-time Computing and Robotics (RCAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCAR54675.2022.9872258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fire prevention and control has always been a topic of concern. Autonomous fire-fighting robot can replace firefighters to complete this dangerous task, which improves work efficiency and ensure work safety to a certain extent. Considering the large volume and weight of the fire-fighting robot, the Ackermann steering mechanism is suitable for the chassis of the robot. This paper focus on the design of the autonomous fire-fighting robot using the Ackermann type of chassis. According to the kinematics of the Ackermann structure, this paper use TEB local path planning algorithm and AMCL positioning algorithm to form a navigation framework to complete the autonomous positioning and navigation of the firefighting robot. At last, a simulation environment is built and the proposed scheme are well demonstrated by the experimental results.