{"title":"A model problem for multiplicative chaos in number theory","authors":"K. Soundararajan, Asif Zaman","doi":"10.4171/LEM/1031","DOIUrl":null,"url":null,"abstract":"Resolving a conjecture of Helson, Harper recently established that partial sums of random multiplicative functions typically exhibit more than square-root cancellation. Harper's work gives an example of a problem in number theory that is closely linked to ideas in probability theory connected with multiplicative chaos; another such closely related problem is the Fyodorov-Hiary-Keating conjecture on the maximum size of the Riemann zeta function in intervals of bounded length on the critical line. In this paper we consider a problem that might be thought of as a simplified function field version of Helson's conjecture. We develop and simplify the ideas of Harper in this context, with the hope that the simplified proof would be of use to readers seeking a gentle entry-point to this fascinating area.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/1031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Resolving a conjecture of Helson, Harper recently established that partial sums of random multiplicative functions typically exhibit more than square-root cancellation. Harper's work gives an example of a problem in number theory that is closely linked to ideas in probability theory connected with multiplicative chaos; another such closely related problem is the Fyodorov-Hiary-Keating conjecture on the maximum size of the Riemann zeta function in intervals of bounded length on the critical line. In this paper we consider a problem that might be thought of as a simplified function field version of Helson's conjecture. We develop and simplify the ideas of Harper in this context, with the hope that the simplified proof would be of use to readers seeking a gentle entry-point to this fascinating area.