{"title":"Functional decomposition of MVL functions using multi-valued decision diagrams","authors":"C. Files, R. Drechsler, M. Perkowski","doi":"10.1109/ISMVL.1997.601370","DOIUrl":null,"url":null,"abstract":"In this paper, the minimization of incompletely specified multi-valued functions using functional decomposition is discussed. From the aspect of machine learning, learning samples can be implemented as minterms in multi-valued logic. The representation, can then be decomposed into smaller blocks, resulting in a reduced problem complexity. This gives induced descriptions through structuring, or feature extraction, of a learning problem. Our approach to the decomposition is based on expressing a multi-valued function (learning problem) in terms of a multi-valued decision diagram that allows the use of Don't Cares. The inclusion of Don't Cares is the emphasis for this paper since multi-valued benchmarks are characterized as having many Don't Cares.","PeriodicalId":206024,"journal":{"name":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1997 27th International Symposium on Multiple- Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1997.601370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
In this paper, the minimization of incompletely specified multi-valued functions using functional decomposition is discussed. From the aspect of machine learning, learning samples can be implemented as minterms in multi-valued logic. The representation, can then be decomposed into smaller blocks, resulting in a reduced problem complexity. This gives induced descriptions through structuring, or feature extraction, of a learning problem. Our approach to the decomposition is based on expressing a multi-valued function (learning problem) in terms of a multi-valued decision diagram that allows the use of Don't Cares. The inclusion of Don't Cares is the emphasis for this paper since multi-valued benchmarks are characterized as having many Don't Cares.