Improving AI systems' dependability by utilizing historical knowledge

R. Knauf, S. Tsuruta, H. Ihara, Avelino J. Gonzalez, Torsten Kurbad
{"title":"Improving AI systems' dependability by utilizing historical knowledge","authors":"R. Knauf, S. Tsuruta, H. Ihara, Avelino J. Gonzalez, Torsten Kurbad","doi":"10.1109/PRDC.2004.1276590","DOIUrl":null,"url":null,"abstract":"A Turing test is a promising way to validate AI systems which usually have no way to proof correctness. However, human experts (validators) are often too busy to participate in it and sometimes have different opinions per person as well as per validation session. To cope with these and increase the validation dependability, a validation knowledge base (VKB) in Turing test-like validation is proposed. The VKB is constructed and maintained across various validation sessions. Primary benefits are (1) decreasing validators' workload, (2) refining the methodology itself, e.g. selecting dependable validators using VKB, and (3) increasing AI systems' dependabilities through dependable validation, e.g. support to identify optimal solutions. Finally, validation experts software agents (VESA) are introduced to further break limitations of human validator's dependability. Each VESA is a software agent corresponding to a particular human validator. This suggests the ability to systematically \"construct\" human-like validators by keeping personal validation knowledge per corresponding validator. This will bring a new dimension towards dependable AI systems.","PeriodicalId":383639,"journal":{"name":"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE Pacific Rim International Symposium on Dependable Computing, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRDC.2004.1276590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A Turing test is a promising way to validate AI systems which usually have no way to proof correctness. However, human experts (validators) are often too busy to participate in it and sometimes have different opinions per person as well as per validation session. To cope with these and increase the validation dependability, a validation knowledge base (VKB) in Turing test-like validation is proposed. The VKB is constructed and maintained across various validation sessions. Primary benefits are (1) decreasing validators' workload, (2) refining the methodology itself, e.g. selecting dependable validators using VKB, and (3) increasing AI systems' dependabilities through dependable validation, e.g. support to identify optimal solutions. Finally, validation experts software agents (VESA) are introduced to further break limitations of human validator's dependability. Each VESA is a software agent corresponding to a particular human validator. This suggests the ability to systematically "construct" human-like validators by keeping personal validation knowledge per corresponding validator. This will bring a new dimension towards dependable AI systems.
利用历史知识提高人工智能系统的可靠性
图灵测试是验证人工智能系统的一种很有前途的方法,因为人工智能系统通常无法证明其正确性。然而,人类专家(验证者)通常太忙而无法参与其中,有时每个人以及每个验证会话都有不同的意见。为了解决这些问题,提高验证的可靠性,提出了类图灵测试验证的验证知识库(VKB)。VKB是跨各种验证会话构建和维护的。主要的好处是:(1)减少验证者的工作量,(2)改进方法本身,例如使用VKB选择可靠的验证者,以及(3)通过可靠的验证增加人工智能系统的可靠性,例如支持识别最佳解决方案。最后,引入验证专家软件代理(VESA),进一步突破人工验证员可靠性的限制。每个VESA都是一个软件代理,对应于一个特定的人工验证器。这表明通过保留每个相应验证器的个人验证知识,系统地“构造”类似人类的验证器的能力。这将为可靠的人工智能系统带来一个新的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信