Local Style Tokens: Fine-Grained Prosodic Representations For TTS Expressive Control

Martin Lenglet, O. Perrotin, G. Bailly
{"title":"Local Style Tokens: Fine-Grained Prosodic Representations For TTS Expressive Control","authors":"Martin Lenglet, O. Perrotin, G. Bailly","doi":"10.21437/ssw.2023-19","DOIUrl":null,"url":null,"abstract":"Neural Text-To-Speech (TTS) models achieve great performances regarding naturalness, but modeling expressivity remains an ongoing challenge. Some success was found through implicit approaches like Global Style Tokens (GST), but these methods model speech style at utterance-level. In this paper, we propose to add an auxiliary module called Local Style To-kens (LST) in the encoder-decoder pipeline to model local variations in prosody. This module can implement various scales of representations; we chose Word-level and Phoneme-level prosodic representations to assess the capabilities of the proposed module to better model sub-utterance style variations. Objective evaluation of the synthetic speech shows that LST modules better capture prosodic variations on 12 common styles compared to a GST baseline. These results were validated by participants during listening tests.","PeriodicalId":346639,"journal":{"name":"12th ISCA Speech Synthesis Workshop (SSW2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"12th ISCA Speech Synthesis Workshop (SSW2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ssw.2023-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural Text-To-Speech (TTS) models achieve great performances regarding naturalness, but modeling expressivity remains an ongoing challenge. Some success was found through implicit approaches like Global Style Tokens (GST), but these methods model speech style at utterance-level. In this paper, we propose to add an auxiliary module called Local Style To-kens (LST) in the encoder-decoder pipeline to model local variations in prosody. This module can implement various scales of representations; we chose Word-level and Phoneme-level prosodic representations to assess the capabilities of the proposed module to better model sub-utterance style variations. Objective evaluation of the synthetic speech shows that LST modules better capture prosodic variations on 12 common styles compared to a GST baseline. These results were validated by participants during listening tests.
局部风格符号:用于TTS表达控制的细粒度韵律表示
神经文本到语音(TTS)模型在自然度方面取得了很好的成绩,但建模表达性仍然是一个持续的挑战。一些成功发现通过隐式方法,如全局风格令牌(GST),但这些方法在话语层面上建模语音风格。在本文中,我们建议在编码器-解码器管道中添加一个辅助模块,称为Local Style to -kens (LST),以模拟韵律的局部变化。该模块可以实现各种尺度的表示;我们选择了词级和音素级的韵律表示来评估所提出的模块更好地模拟子话语风格变化的能力。对合成语音的客观评估表明,与GST基线相比,LST模块更好地捕捉了12种常见风格的韵律变化。这些结果在听力测试中得到了参与者的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信