{"title":"On the Orbit Problem of Free Lie Algebras","authors":"Zeynep YAPTI ÖZKURT","doi":"10.53570/jnt.1284897","DOIUrl":null,"url":null,"abstract":"By operationalizing $F_{n}$ as a free Lie Algebra of finite rank $n$, this work considers the orbit problem for $F_{n}$. The orbit problem is the following: given an element $u\\in F_{n}$ and a finitely generated subalgebra $H$ of $F_{n}$, does $H$ meet the orbit of $u$ under the automorphism group $Aut F_{n}$ of $F_{n}$? It is proven that the orbit problem is decidable for finite rank $n$, $n\\geqslant2$. Furthermore, we solve a particular instance of the problem -- i.e., whether $H$ contains a primitive element of $F_{n}$. In addition, some applications are provided. Finally, the paper inquires the need for further research.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1284897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
By operationalizing $F_{n}$ as a free Lie Algebra of finite rank $n$, this work considers the orbit problem for $F_{n}$. The orbit problem is the following: given an element $u\in F_{n}$ and a finitely generated subalgebra $H$ of $F_{n}$, does $H$ meet the orbit of $u$ under the automorphism group $Aut F_{n}$ of $F_{n}$? It is proven that the orbit problem is decidable for finite rank $n$, $n\geqslant2$. Furthermore, we solve a particular instance of the problem -- i.e., whether $H$ contains a primitive element of $F_{n}$. In addition, some applications are provided. Finally, the paper inquires the need for further research.