M. El-Shorbagy, A. Hassanien
{"title":"Particle Swarm Optimization from Theory to Applications","authors":"M. El-Shorbagy, A. Hassanien","doi":"10.4018/IJRSDA.2018040101","DOIUrl":null,"url":null,"abstract":"Particle swarm optimization (PSO) is considered one of the most important methods in swarm intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks.Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems.PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications.Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique.Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it’sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter setting, selectionand tuning,dynamicenvironments, andhybridization.Also,we introduced the otherrepresentation,convergencepropertiesandtheapplicationsofPSO.Finally,conclusionsand discussionarepresented.Limitationstobeaddressedandthedirectionsofresearchinthefutureare identified,andanextensivebibliographyisalsoincluded.","PeriodicalId":152357,"journal":{"name":"Int. J. Rough Sets Data Anal.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Rough Sets Data Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRSDA.2018040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65
粒子群优化从理论到应用
粒子群优化(PSO)被认为是群中最重要的方法之一intelligence.PSOisrelatedtothestudyofswarms;whereitisasimulationofbirdflocks。Itcanbe usedtosolveawidevarietyofoptimizationproblemssuchasunconstrainedoptimizationproblems, constrainedoptimizationproblems,nonlinearprogramming,multi-objectiveoptimization,stochastic programmingandcombinatorialoptimizationproblems。PSOhasbeenpresentedintheliterature andappliedsuccessfullyinreallifeapplications。Inthispaper,acomprehensivereviewofPSOas awell-knownpopulation-basedoptimizationtechnique。Thereviewstartsbyabriefintroductionto thebehaviorofthePSO,thenbasicconceptsanddevelopmentofPSOarediscussed,it 'sfollowed bythediscussionofPSOinertiaweightandconstrictionfactoraswellasissuesrelatedtoparameter设置,selectionand调优,dynamicenvironments, andhybridization。Also,we介绍了> > otherrepresentation,convergencepropertiesandtheapplicationsofPSO。Finally,conclusionsand discussionarepresented。Limitationstobeaddressedandthedirectionsofresearchinthefutureare确定,andanextensivebibliographyisalsoincluded。
本文章由计算机程序翻译,如有差异,请以英文原文为准。