Fitting Tree Metrics with Minimum Disagreements

Evangelos Kipouridis
{"title":"Fitting Tree Metrics with Minimum Disagreements","authors":"Evangelos Kipouridis","doi":"10.48550/arXiv.2307.16066","DOIUrl":null,"url":null,"abstract":"In the $L_0$ Fitting Tree Metrics problem, we are given all pairwise distances among the elements of a set $V$ and our output is a tree metric on $V$. The goal is to minimize the number of pairwise distance disagreements between the input and the output. We provide an $O(1)$ approximation for $L_0$ Fitting Tree Metrics, which is asymptotically optimal as the problem is APX-Hard. For $p\\ge 1$, solutions to the related $L_p$ Fitting Tree Metrics have typically used a reduction to $L_p$ Fitting Constrained Ultrametrics. Even though in FOCS '22 Cohen-Addad et al. solved $L_0$ Fitting (unconstrained) Ultrametrics within a constant approximation factor, their results did not extend to tree metrics. We identify two possible reasons, and provide simple techniques to circumvent them. Our framework does not modify the algorithm from Cohen-Addad et al. It rather extends any $\\rho$ approximation for $L_0$ Fitting Ultrametrics to a $6\\rho$ approximation for $L_0$ Fitting Tree Metrics in a blackbox fashion.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.16066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the $L_0$ Fitting Tree Metrics problem, we are given all pairwise distances among the elements of a set $V$ and our output is a tree metric on $V$. The goal is to minimize the number of pairwise distance disagreements between the input and the output. We provide an $O(1)$ approximation for $L_0$ Fitting Tree Metrics, which is asymptotically optimal as the problem is APX-Hard. For $p\ge 1$, solutions to the related $L_p$ Fitting Tree Metrics have typically used a reduction to $L_p$ Fitting Constrained Ultrametrics. Even though in FOCS '22 Cohen-Addad et al. solved $L_0$ Fitting (unconstrained) Ultrametrics within a constant approximation factor, their results did not extend to tree metrics. We identify two possible reasons, and provide simple techniques to circumvent them. Our framework does not modify the algorithm from Cohen-Addad et al. It rather extends any $\rho$ approximation for $L_0$ Fitting Ultrametrics to a $6\rho$ approximation for $L_0$ Fitting Tree Metrics in a blackbox fashion.
用最小分歧拟合树指标
在$L_0$拟合树度量问题中,我们给定集合$V$中元素之间的所有两两距离,我们的输出是$V$上的树度量。目标是最小化输入和输出之间的成对距离不一致的数量。我们提供了$L_0$拟合树指标的$O(1)$近似,由于问题是APX-Hard,它是渐近最优的。对于$p\ge 1$,相关的$L_p$拟合树度量的解决方案通常使用$L_p$拟合约束超度量的简化。尽管在FOCS '22中Cohen-Addad等人在一个常数近似因子内解决了$L_0$拟合(无约束)超度量,但他们的结果并没有扩展到树度量。我们确定了两个可能的原因,并提供了简单的技术来规避它们。我们的框架没有修改Cohen-Addad等人的算法。它将任何$\rho$近似$L_0$拟合超度量扩展为$6\rho$近似$L_0$拟合树度量以黑盒方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信