ByoungChang Kim, Sang-Jo Kim, Somi Kang, Sangjoon Moon, Eun-Hye Park, K. Kang
{"title":"Optical properties of polyaniline-coated silica spheres: aging effect in acetone","authors":"ByoungChang Kim, Sang-Jo Kim, Somi Kang, Sangjoon Moon, Eun-Hye Park, K. Kang","doi":"10.1117/12.2187587","DOIUrl":null,"url":null,"abstract":"Polyaniline (PAn)-coated silica spheres have been synthesized by attaching various amounts of N-[3- (trimethoxysilyl)propyl]aniline (TMSPA) and polymerizing with ammonium persulfate. The ratios of tetraethoxy orthosilicate and TMSPA were 10:1 (PAn-A), 5:1 (PAn-B), and 3:1 (PAn-C). After polymerization of the aniline moieties the –OH absorption peak drastically reduced and the new sharp peaks appeared at 1398 cm-1 and 617 cm-1 representing C-N and C-S stretching vibrations, respectively. The polymerized spheres were soaked into the acetone for three months. New absorption peak at 1712 cm-1 representing C=O stretching vibration of an ester appears after three months storage in acetone and becomes stronger with the smaller amount of PAn. Although the sphere film color is gray when it is dried, the color turned to dark when it was wetted with methanol. Complicated solvatochromic behavior was observed for whole UV-visible range depending on the solvent. The solution color changed from clear to dark brown, brown, and yellow for the PAnA, PAnB and PAnC, respectively. The absorption peaks of the dried solution for PAn-A and PAn-B at 3230, 2972, 2926, 1712, 1434/1377, and 1051 cm-1 represent C-OH, R-CH3, R2-CH2, -C=O, C-H, and Si- O-Si absorption, respectively. Photoluminescence peak of the solution shifted toward longer wavelength with the decrease the amount of PAn. The sequence of the amount of new material formation is PAn-A > PAn-B > PAn-C.","PeriodicalId":432358,"journal":{"name":"SPIE NanoScience + Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE NanoScience + Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2187587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Polyaniline (PAn)-coated silica spheres have been synthesized by attaching various amounts of N-[3- (trimethoxysilyl)propyl]aniline (TMSPA) and polymerizing with ammonium persulfate. The ratios of tetraethoxy orthosilicate and TMSPA were 10:1 (PAn-A), 5:1 (PAn-B), and 3:1 (PAn-C). After polymerization of the aniline moieties the –OH absorption peak drastically reduced and the new sharp peaks appeared at 1398 cm-1 and 617 cm-1 representing C-N and C-S stretching vibrations, respectively. The polymerized spheres were soaked into the acetone for three months. New absorption peak at 1712 cm-1 representing C=O stretching vibration of an ester appears after three months storage in acetone and becomes stronger with the smaller amount of PAn. Although the sphere film color is gray when it is dried, the color turned to dark when it was wetted with methanol. Complicated solvatochromic behavior was observed for whole UV-visible range depending on the solvent. The solution color changed from clear to dark brown, brown, and yellow for the PAnA, PAnB and PAnC, respectively. The absorption peaks of the dried solution for PAn-A and PAn-B at 3230, 2972, 2926, 1712, 1434/1377, and 1051 cm-1 represent C-OH, R-CH3, R2-CH2, -C=O, C-H, and Si- O-Si absorption, respectively. Photoluminescence peak of the solution shifted toward longer wavelength with the decrease the amount of PAn. The sequence of the amount of new material formation is PAn-A > PAn-B > PAn-C.