Precise Values for the Strong Subgraph 3-Arc-Connectivity of Cartesian Products of Some Digraph Classes

Yiling Dong
{"title":"Precise Values for the Strong Subgraph 3-Arc-Connectivity of Cartesian Products of Some Digraph Classes","authors":"Yiling Dong","doi":"10.1142/s0219265921500365","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be a digraph of order [Formula: see text], [Formula: see text] a subset of [Formula: see text] of size [Formula: see text] and [Formula: see text]. A strong subgraph [Formula: see text] of [Formula: see text] is called an [Formula: see text]-strong subgraph if [Formula: see text]. A pair of [Formula: see text]-strong subgraphs [Formula: see text] and [Formula: see text] is said to be arc-disjoint if [Formula: see text]. Let [Formula: see text] be the maximum number of arc-disjoint [Formula: see text]-strong subgraphs in [Formula: see text]. Sun and Gutin defined the strong subgraph [Formula: see text]-arc-connectivity as [Formula: see text] The new parameter [Formula: see text] could be seen as a generalization of classical edge-connectivity of undirected graphs. In this paper, we get precise values for the strong subgraph 3-arc-connectivity of Cartesian products of some digraph classes. Also, we prove that there is no upper bound on [Formula: see text] depending on [Formula: see text] and [Formula: see text].","PeriodicalId":153590,"journal":{"name":"J. Interconnect. Networks","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Interconnect. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219265921500365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be a digraph of order [Formula: see text], [Formula: see text] a subset of [Formula: see text] of size [Formula: see text] and [Formula: see text]. A strong subgraph [Formula: see text] of [Formula: see text] is called an [Formula: see text]-strong subgraph if [Formula: see text]. A pair of [Formula: see text]-strong subgraphs [Formula: see text] and [Formula: see text] is said to be arc-disjoint if [Formula: see text]. Let [Formula: see text] be the maximum number of arc-disjoint [Formula: see text]-strong subgraphs in [Formula: see text]. Sun and Gutin defined the strong subgraph [Formula: see text]-arc-connectivity as [Formula: see text] The new parameter [Formula: see text] could be seen as a generalization of classical edge-connectivity of undirected graphs. In this paper, we get precise values for the strong subgraph 3-arc-connectivity of Cartesian products of some digraph classes. Also, we prove that there is no upper bound on [Formula: see text] depending on [Formula: see text] and [Formula: see text].
某些有向图类笛卡尔积的强子图3-弧连通性的精确值
设[公式:见文]是有序的有向图[公式:见文],[公式:见文]是大小为[公式:见文]和[公式:见文]的[公式:见文]的子集。[公式:见文]的强子图[公式:见文]称为[公式:见文]-强子图,如果[公式:见文]。一对[公式:见文]-强子图[公式:见文]和[公式:见文]被称为弧不相交,如果[公式:见文]。设[公式:见文]为[公式:见文]中弧不相交[公式:见文]-强子图的最大数目。Sun和Gutin将强子图[公式:见文]-弧连通性定义为[公式:见文]。新的参数[公式:见文]可以看作是对经典无向图边连通性的推广。本文给出了一些有向图类笛卡尔积的强子图3-弧连通性的精确值。同时,我们证明了[公式:见文]不存在依赖于[公式:见文]和[公式:见文]的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信