Tracking clusters and anomalies in evolving data streams

Sreelekha Guggilam, V. Chandola, A. Patra
{"title":"Tracking clusters and anomalies in evolving data streams","authors":"Sreelekha Guggilam, V. Chandola, A. Patra","doi":"10.1002/sam.11552","DOIUrl":null,"url":null,"abstract":"Data‐driven anomaly detection methods typically build a model for the normal behavior of the target system, and score each data instance with respect to this model. A threshold is invariably needed to identify data instances with high (or low) scores as anomalies. This presents a practical limitation on the applicability of such methods, since most methods are sensitive to the choice of the threshold, and it is challenging to set optimal thresholds. The issue is exacerbated in a streaming scenario, where the optimal thresholds vary with time. We present a probabilistic framework to explicitly model the normal and anomalous behaviors and probabilistically reason about the data. An extreme value theory based formulation is proposed to model the anomalous behavior as the extremes of the normal behavior. As a specific instantiation, a joint nonparametric clustering and anomaly detection algorithm (INCAD) is proposed that models the normal behavior as a Dirichlet process mixture model. Results on a variety of datasets, including streaming data, show that the proposed method provides effective and simultaneous clustering and anomaly detection without requiring strong initialization and threshold parameters.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Data‐driven anomaly detection methods typically build a model for the normal behavior of the target system, and score each data instance with respect to this model. A threshold is invariably needed to identify data instances with high (or low) scores as anomalies. This presents a practical limitation on the applicability of such methods, since most methods are sensitive to the choice of the threshold, and it is challenging to set optimal thresholds. The issue is exacerbated in a streaming scenario, where the optimal thresholds vary with time. We present a probabilistic framework to explicitly model the normal and anomalous behaviors and probabilistically reason about the data. An extreme value theory based formulation is proposed to model the anomalous behavior as the extremes of the normal behavior. As a specific instantiation, a joint nonparametric clustering and anomaly detection algorithm (INCAD) is proposed that models the normal behavior as a Dirichlet process mixture model. Results on a variety of datasets, including streaming data, show that the proposed method provides effective and simultaneous clustering and anomaly detection without requiring strong initialization and threshold parameters.
在不断发展的数据流中跟踪集群和异常
数据驱动的异常检测方法通常为目标系统的正常行为建立一个模型,并根据该模型对每个数据实例进行评分。总是需要一个阈值来识别具有高(或低)分数的数据实例作为异常。这对这些方法的适用性提出了实际限制,因为大多数方法对阈值的选择很敏感,并且设置最佳阈值具有挑战性。这个问题在流场景中更加严重,因为最佳阈值随时间而变化。我们提出了一个概率框架来明确地对数据的正常和异常行为和概率推理进行建模。提出了一种基于极值理论的公式,将异常行为建模为正常行为的极值。作为具体实例,提出了一种联合非参数聚类和异常检测算法(INCAD),该算法将正常行为建模为Dirichlet过程混合模型。在包括流数据在内的多种数据集上的实验结果表明,该方法在不需要强初始化和阈值参数的情况下,提供了有效且同步的聚类和异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信