Dynamic vocabulary prediction for isolated-word dictation on embedded devices

Jussi Leppänen, Jilei Tian
{"title":"Dynamic vocabulary prediction for isolated-word dictation on embedded devices","authors":"Jussi Leppänen, Jilei Tian","doi":"10.1109/ASRU.2007.4430172","DOIUrl":null,"url":null,"abstract":"Large-vocabulary speech recognition systems have mainly been developed for fast processors and large amounts of memory that are available on desktop computers and network servers. Much progress has been made towards running these systems on portable devices. Challenges still exist, however, when developing highly efficient algorithms for real-time speech recognition on resource-limited embedded platforms. In this paper, a dynamic vocabulary prediction approach is proposed to decrease the memory footprint of the speech recognizer decoder by keeping the decoder vocabulary small. This leads to reduced acoustic confusion as well as achieving very efficient use of computational resources. Experiments on an isolated-word SMS dictation task have shown that 40% of the vocabulary prediction errors can be eliminated compared to the baseline system.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large-vocabulary speech recognition systems have mainly been developed for fast processors and large amounts of memory that are available on desktop computers and network servers. Much progress has been made towards running these systems on portable devices. Challenges still exist, however, when developing highly efficient algorithms for real-time speech recognition on resource-limited embedded platforms. In this paper, a dynamic vocabulary prediction approach is proposed to decrease the memory footprint of the speech recognizer decoder by keeping the decoder vocabulary small. This leads to reduced acoustic confusion as well as achieving very efficient use of computational resources. Experiments on an isolated-word SMS dictation task have shown that 40% of the vocabulary prediction errors can be eliminated compared to the baseline system.
嵌入式设备上孤立词听写的动态词汇预测
大词汇量语音识别系统主要是为桌面计算机和网络服务器上的快速处理器和大内存而开发的。在便携式设备上运行这些系统方面已经取得了很大进展。然而,在资源有限的嵌入式平台上开发高效的实时语音识别算法仍然存在挑战。本文提出了一种动态词汇预测方法,通过保持解码器词汇量较小来减少语音识别器解码器的内存占用。这可以减少声音混淆,并实现非常有效地利用计算资源。在一个孤立单词的短信听写任务上的实验表明,与基线系统相比,该系统可以消除40%的词汇预测错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信