Geographic features in web search retrieval

R. Jones, Ahmed Hassan Awadallah, Fernando Diaz
{"title":"Geographic features in web search retrieval","authors":"R. Jones, Ahmed Hassan Awadallah, Fernando Diaz","doi":"10.1145/1460007.1460023","DOIUrl":null,"url":null,"abstract":"We conduct large-scale search engine relevance experiments, using the 12% of queries that contain placenames, matching the placenames to places in the documents, and examining the impact of geographic features on web retrieval relevance. Specifically we examine distance between query and document place-names mentioned, noting that when a document has multiple places (which we observe in 82% of documents) we must choose a function over those multiple places. We find that the minimum distance between the document locations and query location is the strongest geographical predictor of document relevance, and that combining geographic features with text features gives us a 5% improvement in relevance over using text features alone.","PeriodicalId":167948,"journal":{"name":"Workshop on Geographic Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Geographic Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1460007.1460023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We conduct large-scale search engine relevance experiments, using the 12% of queries that contain placenames, matching the placenames to places in the documents, and examining the impact of geographic features on web retrieval relevance. Specifically we examine distance between query and document place-names mentioned, noting that when a document has multiple places (which we observe in 82% of documents) we must choose a function over those multiple places. We find that the minimum distance between the document locations and query location is the strongest geographical predictor of document relevance, and that combining geographic features with text features gives us a 5% improvement in relevance over using text features alone.
网络检索中的地理特征
我们进行了大规模的搜索引擎相关性实验,使用包含地名的12%的查询,将地名与文档中的地点进行匹配,并检查地理特征对网络检索相关性的影响。具体来说,我们检查了查询和文档所提到的地名之间的距离,注意到当文档有多个地名时(我们在82%的文档中观察到这种情况),我们必须在这些地名上选择一个函数。我们发现文档位置和查询位置之间的最小距离是文档相关性最强的地理预测器,并且将地理特征与文本特征相结合使我们在相关性方面比单独使用文本特征提高了5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信