Unsupervised probabilistic segmentation of motion data for mimesis modeling

B. Janus, Y. Nakamura
{"title":"Unsupervised probabilistic segmentation of motion data for mimesis modeling","authors":"B. Janus, Y. Nakamura","doi":"10.1109/ICAR.2005.1507443","DOIUrl":null,"url":null,"abstract":"Humanoid developments express the need for intelligent learning systems that can automatically realize behavior acquisition and symbol emergence. In the framework of mimesis model, we present an unsupervised dynamic HMM-based algorithm in order to analyze vectorial motion data. The efficiency of this algorithm is demonstrated by segmenting continuous sequence of real movements. We also propose to use it as the first level of an information treatment system by associating it with a recognition process. Unlike other existing segmentation-recognition system, our segmentation process does not need any learning of the parameters that increases the flexibility of the whole segmentation-recognition system and the range of its possible applications","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Humanoid developments express the need for intelligent learning systems that can automatically realize behavior acquisition and symbol emergence. In the framework of mimesis model, we present an unsupervised dynamic HMM-based algorithm in order to analyze vectorial motion data. The efficiency of this algorithm is demonstrated by segmenting continuous sequence of real movements. We also propose to use it as the first level of an information treatment system by associating it with a recognition process. Unlike other existing segmentation-recognition system, our segmentation process does not need any learning of the parameters that increases the flexibility of the whole segmentation-recognition system and the range of its possible applications
模拟建模中运动数据的无监督概率分割
人形机器人的发展表达了对能够自动实现行为获取和符号出现的智能学习系统的需求。在模拟模型的框架下,提出了一种基于无监督动态hmm的矢量运动数据分析算法。通过对连续的真实运动序列进行分割,验证了该算法的有效性。我们还建议通过将其与识别过程联系起来,将其作为信息处理系统的第一层。与其他现有的分割识别系统不同,我们的分割过程不需要任何参数的学习,这增加了整个分割识别系统的灵活性和可能的应用范围
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信