Hybrid multi-objective forecasting of solar photovoltaic output using Kalman filter based interval type-2 fuzzy logic system

Saima Hassan, M. A. Khanesar, A. Hajizadeh, A. Khosravi
{"title":"Hybrid multi-objective forecasting of solar photovoltaic output using Kalman filter based interval type-2 fuzzy logic system","authors":"Saima Hassan, M. A. Khanesar, A. Hajizadeh, A. Khosravi","doi":"10.1109/FUZZ-IEEE.2017.8015733","DOIUrl":null,"url":null,"abstract":"Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic system in both the hybrid algorithms are tuned using Kalman filter. Whereas the antecedent parameters of the system in the first hybrid algorithm is optimized using the multi-objective particle swarm optimization (MOPSO) and using the multi-objective evolutionary algorithm Based on Decomposition (MOEA/D) in the second hybrid algorithm. Root mean square error and maximum absolute error as the two accuracy objective are utilized to find the Pareto-optimal solution with the MOPSO and MOEA/D respectively. The proposed hybrid multi-objective designs of the interval type-2 fuzzy logic system are utilized to the prediction of solar photovoltaic output. It is observed that MOEA/D outperforms MOPSO in this case in terms of quality of results and its diversity. Finally, one point is selected from the obtained Pareto front and its performance is illustrated.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic system in both the hybrid algorithms are tuned using Kalman filter. Whereas the antecedent parameters of the system in the first hybrid algorithm is optimized using the multi-objective particle swarm optimization (MOPSO) and using the multi-objective evolutionary algorithm Based on Decomposition (MOEA/D) in the second hybrid algorithm. Root mean square error and maximum absolute error as the two accuracy objective are utilized to find the Pareto-optimal solution with the MOPSO and MOEA/D respectively. The proposed hybrid multi-objective designs of the interval type-2 fuzzy logic system are utilized to the prediction of solar photovoltaic output. It is observed that MOEA/D outperforms MOPSO in this case in terms of quality of results and its diversity. Finally, one point is selected from the obtained Pareto front and its performance is illustrated.
基于卡尔曼滤波的区间2型模糊逻辑系统混合多目标预测太阳能光伏输出
利用进化算法学习系统建模的模糊参数是一个有趣的话题。本文采用混合学习算法对区间2型模糊逻辑系统进行了两种优化设计和整定。在这两种混合算法中,区间2型模糊逻辑系统的后续参数都使用卡尔曼滤波进行了调谐。第一种混合算法采用多目标粒子群算法(MOPSO)对系统的前置参数进行优化,第二种混合算法采用基于分解的多目标进化算法(MOEA/D)对系统进行优化。以均方根误差和最大绝对误差为精度目标,分别用MOPSO和MOEA/D求pareto最优解。将区间2型模糊逻辑系统的混合多目标设计应用于太阳能光伏发电出力预测。可以看出,在这种情况下,MOEA/D在结果质量和多样性方面优于MOPSO。最后,从得到的帕累托阵中选取一个点,并对其性能进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信