Saima Hassan, M. A. Khanesar, A. Hajizadeh, A. Khosravi
{"title":"Hybrid multi-objective forecasting of solar photovoltaic output using Kalman filter based interval type-2 fuzzy logic system","authors":"Saima Hassan, M. A. Khanesar, A. Hajizadeh, A. Khosravi","doi":"10.1109/FUZZ-IEEE.2017.8015733","DOIUrl":null,"url":null,"abstract":"Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic system in both the hybrid algorithms are tuned using Kalman filter. Whereas the antecedent parameters of the system in the first hybrid algorithm is optimized using the multi-objective particle swarm optimization (MOPSO) and using the multi-objective evolutionary algorithm Based on Decomposition (MOEA/D) in the second hybrid algorithm. Root mean square error and maximum absolute error as the two accuracy objective are utilized to find the Pareto-optimal solution with the MOPSO and MOEA/D respectively. The proposed hybrid multi-objective designs of the interval type-2 fuzzy logic system are utilized to the prediction of solar photovoltaic output. It is observed that MOEA/D outperforms MOPSO in this case in terms of quality of results and its diversity. Finally, one point is selected from the obtained Pareto front and its performance is illustrated.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Learning of fuzzy parameters for system modeling using evolutionary algorithms is an interesting topic. In this paper, two optimal design and tuning of Interval type-2 fuzzy logic system are proposed using hybrid learning algorithms. The consequent parameters of the interval type-2 fuzzy logic system in both the hybrid algorithms are tuned using Kalman filter. Whereas the antecedent parameters of the system in the first hybrid algorithm is optimized using the multi-objective particle swarm optimization (MOPSO) and using the multi-objective evolutionary algorithm Based on Decomposition (MOEA/D) in the second hybrid algorithm. Root mean square error and maximum absolute error as the two accuracy objective are utilized to find the Pareto-optimal solution with the MOPSO and MOEA/D respectively. The proposed hybrid multi-objective designs of the interval type-2 fuzzy logic system are utilized to the prediction of solar photovoltaic output. It is observed that MOEA/D outperforms MOPSO in this case in terms of quality of results and its diversity. Finally, one point is selected from the obtained Pareto front and its performance is illustrated.