Using Machine Learning Techniques To QC Log Data Before A Study

J. Johnston
{"title":"Using Machine Learning Techniques To QC Log Data Before A Study","authors":"J. Johnston","doi":"10.3997/2214-4609.201803019","DOIUrl":null,"url":null,"abstract":"Summary A large part of a petrophysics project lies in sorting and tidying up the input data, trying to fix the logs where they are bad or missing. Another step is identifying where the log response is not as expected. Typically this is done by looking at log plots and crossplots and making judgements on the fly, often in individual wells. The answers are often people-dependent. The advent of machine learning techniques has the potential to change this by enabling users to incorporate large quantities of data and view differences in a more holistic way. This project involved a set of wells from the Barents Sea with the objective of calibrating the logs with geological observed depositional facies from cored wells, and then using just the logs to propagate those to uncored wells.","PeriodicalId":231338,"journal":{"name":"First EAGE/PESGB Workshop Machine Learning","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"First EAGE/PESGB Workshop Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201803019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary A large part of a petrophysics project lies in sorting and tidying up the input data, trying to fix the logs where they are bad or missing. Another step is identifying where the log response is not as expected. Typically this is done by looking at log plots and crossplots and making judgements on the fly, often in individual wells. The answers are often people-dependent. The advent of machine learning techniques has the potential to change this by enabling users to incorporate large quantities of data and view differences in a more holistic way. This project involved a set of wells from the Barents Sea with the objective of calibrating the logs with geological observed depositional facies from cored wells, and then using just the logs to propagate those to uncored wells.
在研究前使用机器学习技术对数据进行QC记录
岩石物理项目的很大一部分工作是对输入数据进行分类和整理,试图修复测井数据的错误或缺失。另一个步骤是确定哪些地方的日志响应不符合预期。通常情况下,这是通过查看测井曲线和交叉曲线,并动态做出判断来完成的,通常是在单井中。答案往往取决于人。机器学习技术的出现有可能改变这种情况,使用户能够整合大量数据,并以更全面的方式看待差异。该项目涉及巴伦支海的一组井,目的是将测井曲线与从取心井观察到的沉积相进行校准,然后仅使用测井曲线将其传播到未取心井。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信