Robustness analysis of a MOEA-based elicitation method for outranking model parameters

Edgar Covantes Osuna, E. Fernández, Jorge Navarro
{"title":"Robustness analysis of a MOEA-based elicitation method for outranking model parameters","authors":"Edgar Covantes Osuna, E. Fernández, Jorge Navarro","doi":"10.1109/ICEEE.2013.6676017","DOIUrl":null,"url":null,"abstract":"To set the parameter values for the outranking model is usually a demanding task for the decision-maker (DM) because it is necessary to provide a large number of parameters (thresholds and weights). The use of indirect methods (preference-disaggregation analysis (PDA)) to infer the set of parameters from a battery of decision examples allows the DM to avoid the task of specifying these values. In this paper a robustness analysis has been made to a PDA method based on an evolutionary approach. In this case we use THESEUS method as an artificial DM and its assignment rule for evaluating each individual of a multi-objective evolutionary algorithm (MOEA) population. The non-dominated solutions are acceptable parameter settlements.","PeriodicalId":226547,"journal":{"name":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2013.6676017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

To set the parameter values for the outranking model is usually a demanding task for the decision-maker (DM) because it is necessary to provide a large number of parameters (thresholds and weights). The use of indirect methods (preference-disaggregation analysis (PDA)) to infer the set of parameters from a battery of decision examples allows the DM to avoid the task of specifying these values. In this paper a robustness analysis has been made to a PDA method based on an evolutionary approach. In this case we use THESEUS method as an artificial DM and its assignment rule for evaluating each individual of a multi-objective evolutionary algorithm (MOEA) population. The non-dominated solutions are acceptable parameter settlements.
基于moea的模型参数超排序启发方法的鲁棒性分析
对于决策者(DM)来说,设置超排序模型的参数值通常是一项要求很高的任务,因为它需要提供大量的参数(阈值和权重)。使用间接方法(偏好分解分析(PDA))从一组决策示例中推断出一组参数,允许DM避免指定这些值的任务。本文对基于进化方法的PDA方法进行了鲁棒性分析。在这种情况下,我们使用THESEUS方法作为人工DM及其分配规则来评估多目标进化算法(MOEA)群体中的每个个体。非支配解是可接受的参数沉降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信