Grid voltage modulated direct power control for grid connected voltage source inverters

Yonghao Gui, Chunghun Kim, C. Chung
{"title":"Grid voltage modulated direct power control for grid connected voltage source inverters","authors":"Yonghao Gui, Chunghun Kim, C. Chung","doi":"10.23919/ACC.2017.7963259","DOIUrl":null,"url":null,"abstract":"We propose a grid voltage modulated (GVM) direct power control (DPC) strategy for a grid-connected voltage source inverter (VSI) to control the instantaneous active and reactive powers. The GVM-DPC presents the system in d-q frame without using a phase-lock loop. In addition, the GVM method converts the system into a linear time-invariant system. The GVM-DPC is designed to obtain two separate second-order systems for not only the convergence rate of the instantaneous active and reactive powers but also the steady-state performance. In addition, the closed-loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total harmonic distortion than that of the sliding mode control DPC method. Finally, the proposed method is validated by using a hardware-in-the-loop system with a digital signal processor. The experimental results are similar to simulation results. Moreover, the robustness to the line impedance and the grid voltage is tested and discussed.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We propose a grid voltage modulated (GVM) direct power control (DPC) strategy for a grid-connected voltage source inverter (VSI) to control the instantaneous active and reactive powers. The GVM-DPC presents the system in d-q frame without using a phase-lock loop. In addition, the GVM method converts the system into a linear time-invariant system. The GVM-DPC is designed to obtain two separate second-order systems for not only the convergence rate of the instantaneous active and reactive powers but also the steady-state performance. In addition, the closed-loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total harmonic distortion than that of the sliding mode control DPC method. Finally, the proposed method is validated by using a hardware-in-the-loop system with a digital signal processor. The experimental results are similar to simulation results. Moreover, the robustness to the line impedance and the grid voltage is tested and discussed.
并网电压源逆变器的电网调压直接功率控制
针对并网电压源逆变器(VSI)的瞬时有功和无功功率控制,提出了一种电网电压调制(GVM)直接功率控制(DPC)策略。GVM-DPC在不使用锁相环的情况下以d-q帧表示系统。此外,GVM方法将系统转化为线性定常系统。GVM-DPC不仅具有瞬时有功功率和无功功率的收敛速度,而且具有稳态性能,设计成两个独立的二阶系统。此外,闭环系统在整个工作范围内呈指数稳定。利用MATLAB/Simulink和PLECS块集对该方法进行了验证。仿真结果表明,该方法不仅具有良好的有功和无功跟踪性能,而且比滑模控制DPC方法具有更小的电流总谐波失真。最后,通过一个带数字信号处理器的半实物系统对该方法进行了验证。实验结果与仿真结果基本一致。此外,还对该系统对线路阻抗和电网电压的鲁棒性进行了测试和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信