Optimal Distance Labeling Schemes for Trees

Ofer Freedman, Paweł Gawrychowski, Patrick K. Nicholson, O. Weimann
{"title":"Optimal Distance Labeling Schemes for Trees","authors":"Ofer Freedman, Paweł Gawrychowski, Patrick K. Nicholson, O. Weimann","doi":"10.1145/3087801.3087804","DOIUrl":null,"url":null,"abstract":"Labeling schemes seek to assign a short label to each node in a network, so that a function on two nodes (such as distance or adjacency) can be computed by examining their labels alone. For the particular case of trees, following a long line of research, optimal bounds (up to low order terms) were recently obtained for adjacency labeling [FOCS '15], nearest common ancestor labeling [SODA '14], and ancestry labeling [SICOMP '06]. In this paper we obtain optimal bounds for distance labeling. We present labels of size 1/4\\log^2n+o(\\log^2n), matching (up to low order terms) the recent 1/4\\log^2n-\\Oh(\\log n) lower bound [ICALP '16]. Prior to our work, all distance labeling schemes for trees could be reinterpreted as universal trees. A tree T is said to be universal if any tree on $n$ nodes can be found as a subtree of T. A universal tree with |T| nodes implies a distance labeling scheme with label size \\log |T|. In 1981, Chung et al. proved that any distance labeling scheme based on universal trees requires labels of size 1/2\\log^2 n -\\log n \\cdot \\log\\log n+\\Oh(\\log n). Our scheme is the first to break this lower bound, showing a separation between distance labeling and universal trees. The θ (log2 n) barrier for distance labeling in trees has led researchers to consider distances bounded by k. The size of such labels was shown to be \\log n+\\Oh(k\\sqrt{\\log n}) in [WADS '01], and then improved to \\log n+\\Oh(k^2(\\log(k\\log n)) in [SODA '03] and finally to \\log n+\\Oh(k\\log(k\\log(n/k))) in [PODC '07]. We show how to construct labels whose size is the minimum between \\log n+\\Oh(k\\log((\\log n)/k)) and \\Oh(\\log n \\cdot \\log(k/\\log n)). We complement this with almost tight lower bounds of \\log n+\\Omega(k\\log(\\log n / (k\\log k))) and \\Omega(\\log n \\cdot \\log(k/\\log n)). Finally, we consider (1+\\eps)-approximate distances. We show that the recent labeling scheme of [ICALP '16] can be easily modified to obtain an \\Oh(\\log(1/\\eps)\\cdot \\log n) upper bound and we prove a matching \\Omega(\\log(1/\\eps)\\cdot \\log n) lower bound.","PeriodicalId":324970,"journal":{"name":"Proceedings of the ACM Symposium on Principles of Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087801.3087804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Labeling schemes seek to assign a short label to each node in a network, so that a function on two nodes (such as distance or adjacency) can be computed by examining their labels alone. For the particular case of trees, following a long line of research, optimal bounds (up to low order terms) were recently obtained for adjacency labeling [FOCS '15], nearest common ancestor labeling [SODA '14], and ancestry labeling [SICOMP '06]. In this paper we obtain optimal bounds for distance labeling. We present labels of size 1/4\log^2n+o(\log^2n), matching (up to low order terms) the recent 1/4\log^2n-\Oh(\log n) lower bound [ICALP '16]. Prior to our work, all distance labeling schemes for trees could be reinterpreted as universal trees. A tree T is said to be universal if any tree on $n$ nodes can be found as a subtree of T. A universal tree with |T| nodes implies a distance labeling scheme with label size \log |T|. In 1981, Chung et al. proved that any distance labeling scheme based on universal trees requires labels of size 1/2\log^2 n -\log n \cdot \log\log n+\Oh(\log n). Our scheme is the first to break this lower bound, showing a separation between distance labeling and universal trees. The θ (log2 n) barrier for distance labeling in trees has led researchers to consider distances bounded by k. The size of such labels was shown to be \log n+\Oh(k\sqrt{\log n}) in [WADS '01], and then improved to \log n+\Oh(k^2(\log(k\log n)) in [SODA '03] and finally to \log n+\Oh(k\log(k\log(n/k))) in [PODC '07]. We show how to construct labels whose size is the minimum between \log n+\Oh(k\log((\log n)/k)) and \Oh(\log n \cdot \log(k/\log n)). We complement this with almost tight lower bounds of \log n+\Omega(k\log(\log n / (k\log k))) and \Omega(\log n \cdot \log(k/\log n)). Finally, we consider (1+\eps)-approximate distances. We show that the recent labeling scheme of [ICALP '16] can be easily modified to obtain an \Oh(\log(1/\eps)\cdot \log n) upper bound and we prove a matching \Omega(\log(1/\eps)\cdot \log n) lower bound.
树的最优距离标记方案
标记方案寻求为网络中的每个节点分配一个短标签,这样两个节点上的函数(如距离或邻接)可以通过单独检查它们的标签来计算。对于树的特殊情况,经过长时间的研究,最近获得了邻接标记[FOCS '15],最近共同祖先标记[SODA '14]和祖先标记[SICOMP '06]的最佳边界(直到低阶项)。本文给出了距离标注的最优界。我们给出大小为1/4 \log ^2n+o(\log ^2n)的标签,匹配(直到低阶项)最近的1/4 \log ^2n- \Oh (\log n)下界[ICALP '16]。在我们的工作之前,所有树的距离标记方案都可以重新解释为通用树。如果在$n$节点上的任何树都可以被发现是T的子树,那么树T就被称为泛树。一个有|T|节点的泛树意味着一个标签大小为\log |T|的距离标记方案。1981年,Chung等人证明了任何基于通用树的距离标注方案都需要大小为1/2 \log ^2 n - \log n \cdot\log\log n+ \Oh (\log n)的标注。我们的方案是第一个打破这个下界的方案,显示了距离标注与通用树的分离。树中距离标记的θ (log2 n)障碍使研究人员考虑以k为界的距离。在[WADS '01]中,这种标记的大小显示为\log n+ \Oh (k \sqrt{\log n}),然后在[SODA '03]中改进为\log n+ \Oh (k^2(\log (k \log n)),最后在[PODC '07]中改进为\log n+ \Oh (k \log (k \log (n/k)))。我们展示了如何构造大小为\log n+ \Oh (k \log ((\log n)/k))和\Oh (\log n \cdot\log (k/ \log n))之间最小值的标签。我们用\log n+ \Omega (k \log (\log n / (k \log k)))和\Omega (\log n \cdot\log (k/ \log n)))的下界来补充这一点。最后,我们考虑(1+ \eps)-近似距离。我们证明了[ICALP '16]最近的标注方案可以很容易地修改,以获得\Oh (\log (1/ \eps) \cdot\log n)上界和\Omega (\log (1/ \eps) \cdot\log n)下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信