Hardware-accelerated pose estimation for embedded systems using Vivado HLS

J. Joseph, Tobias Winker, Kristian Ehlers, Christopher Blochwitz, Thilo Pionteck
{"title":"Hardware-accelerated pose estimation for embedded systems using Vivado HLS","authors":"J. Joseph, Tobias Winker, Kristian Ehlers, Christopher Blochwitz, Thilo Pionteck","doi":"10.1109/ReConFig.2016.7857173","DOIUrl":null,"url":null,"abstract":"The focus of this work is to facilitate pose estimation and, thus, gesture recognition for embedded systems, although these are tasks with high computational performance requirements. Therefore, an existing pose estimation algorithm is optimized for Xilinx High Level Synthesis (HLS). The resulting hardware acceleration cores are compared for different optimizations and, finally, we propose a hardware/software system design for a Xilinx Zynq Zedboard. Using this method, we achieve a speedup of 1.6 in comparison to a software solution on the ARM processor and, thus, facilitate hand tracking for embedded systems with low power consumption.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The focus of this work is to facilitate pose estimation and, thus, gesture recognition for embedded systems, although these are tasks with high computational performance requirements. Therefore, an existing pose estimation algorithm is optimized for Xilinx High Level Synthesis (HLS). The resulting hardware acceleration cores are compared for different optimizations and, finally, we propose a hardware/software system design for a Xilinx Zynq Zedboard. Using this method, we achieve a speedup of 1.6 in comparison to a software solution on the ARM processor and, thus, facilitate hand tracking for embedded systems with low power consumption.
基于Vivado HLS的嵌入式系统硬件加速姿态估计
这项工作的重点是促进姿态估计,从而促进嵌入式系统的手势识别,尽管这些任务具有很高的计算性能要求。因此,针对Xilinx High Level Synthesis (HLS),对现有的姿态估计算法进行了优化。最后,我们提出了Xilinx Zynq Zedboard的硬件/软件系统设计方案。使用这种方法,与ARM处理器上的软件解决方案相比,我们实现了1.6的加速,从而促进了低功耗嵌入式系统的手部跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信