Mimeme Attribute Classification using LDV Ensemble Multimodel Learning

D. K, Akoramurthy B, T. Sivakumar, M. Sathya
{"title":"Mimeme Attribute Classification using LDV Ensemble Multimodel Learning","authors":"D. K, Akoramurthy B, T. Sivakumar, M. Sathya","doi":"10.5121/cseij.2022.12610","DOIUrl":null,"url":null,"abstract":"One of the most common types of social networking interaction is memes. Memes are innately multimodal, so studying and processing them is a hot issue currently. This study's analysis of the DV dataset comprises classifying memes according to their irony, humour, motive, and overarching mood. The effectiveness of three different creative transformer-based strategies has been carefully examined. The DV Dataset used here is created by own meme data for this implementation analysis of hateful memes. Out of all of our strategies, the proposed ensemble model LDV obtained a macro F1 score of 0.737 for humour classification, 0.775 for motivation classification, 0.69 for sarcasm classification, and 0.756 for overall sentiment of the meme.","PeriodicalId":361871,"journal":{"name":"Computer Science & Engineering: An International Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Engineering: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/cseij.2022.12610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most common types of social networking interaction is memes. Memes are innately multimodal, so studying and processing them is a hot issue currently. This study's analysis of the DV dataset comprises classifying memes according to their irony, humour, motive, and overarching mood. The effectiveness of three different creative transformer-based strategies has been carefully examined. The DV Dataset used here is created by own meme data for this implementation analysis of hateful memes. Out of all of our strategies, the proposed ensemble model LDV obtained a macro F1 score of 0.737 for humour classification, 0.775 for motivation classification, 0.69 for sarcasm classification, and 0.756 for overall sentiment of the meme.
基于LDV集成多模型学习的Mimeme属性分类
最常见的社交网络互动类型之一是模因。模因本质上是多模态的,因此对模因的研究和处理是当前研究的热点。本研究对DV数据集的分析包括根据其讽刺、幽默、动机和总体情绪对模因进行分类。我们仔细研究了三种不同的创造性变革策略的有效性。这里使用的DV数据集是由自己的模因数据创建的,用于对仇恨模因的实现分析。在我们所有的策略中,我们提出的集成模型LDV在幽默分类上获得了0.737的宏观F1分,在动机分类上获得了0.775分,在讽刺分类上获得了0.69分,在模因的整体情绪上获得了0.756分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信