Snyder Like Modified Gravity in Newton's Spacetime

C. Leiva
{"title":"Snyder Like Modified Gravity in Newton's Spacetime","authors":"C. Leiva","doi":"10.1142/S0218271818500700","DOIUrl":null,"url":null,"abstract":"This work is focused on searching a geodesic interpretation of the dynamics of a particle under the effects of a Snyder like deformation in the background of the Kepler problem. In order to accomplish that task, a newtonian spacetime is used. Newtonian spacetime is not a metric manifold, but allows to introduce a torsion free connection in order to interpret the dynamic equations of the deformed Kepler problem as geodesics in a curved spacetime. These geodesics and the curvature terms of the Riemann and Ricci tensors show a mass and a fundamental length dependence as expected, but are velocity independent. In this sense, the effect of introducing a deformed algebra is examinated and the corresponding curvature terms calculated, as well as the modifications of the integrals of motion.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218271818500700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work is focused on searching a geodesic interpretation of the dynamics of a particle under the effects of a Snyder like deformation in the background of the Kepler problem. In order to accomplish that task, a newtonian spacetime is used. Newtonian spacetime is not a metric manifold, but allows to introduce a torsion free connection in order to interpret the dynamic equations of the deformed Kepler problem as geodesics in a curved spacetime. These geodesics and the curvature terms of the Riemann and Ricci tensors show a mass and a fundamental length dependence as expected, but are velocity independent. In this sense, the effect of introducing a deformed algebra is examinated and the corresponding curvature terms calculated, as well as the modifications of the integrals of motion.
Snyder喜欢牛顿时空中的修正引力
这项工作的重点是在开普勒问题的背景下,在Snyder样变形的影响下,寻找粒子动力学的测地线解释。为了完成这项任务,使用了牛顿时空。牛顿时空不是度量流形,但允许引入无扭转连接,以便将变形开普勒问题的动态方程解释为弯曲时空中的测地线。这些测地线和黎曼张量和里奇张量的曲率项与预期的质量和基本长度相关,但与速度无关。在这个意义上,我们考察了引入变形代数的影响,计算了相应的曲率项,以及对运动积分的修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信