ON THE EQUIVALENCE OF SOME CONVOLUTIONAL EQUALITIES IN SPACES OF SEQUENCES

M. Mytskan, T. Zvozdetskyi
{"title":"ON THE EQUIVALENCE OF SOME CONVOLUTIONAL EQUALITIES IN SPACES OF SEQUENCES","authors":"M. Mytskan, T. Zvozdetskyi","doi":"10.31861/bmj2021.01.15","DOIUrl":null,"url":null,"abstract":"The problem of the equivalence of two systems with $n$ convolutional equalities arose in\ninvestigation of the conditions of similarity in spaces of sequences of operators which\nare left inverse to the $n$-th degree of the generalized integration operator. In this paper we solve this problem. Note that we first prove the equivalence of two corresponding systems with $n$ equalities in the spaces of analytic functions, and then, using this statement, the main result of paper is obtained.\n\nLet $X$ be a vector space of sequences of complex numbers with K$\\ddot{\\rm o}$the normal topology from a wide class of spaces,\n${\\mathcal I}_{\\alpha}$ be a generalized integration operator on $X$, $\\ast$ be a nontrivial convolution for ${\\mathcal I}_{\\alpha}$ in $X$,\nand $(P_q)_{q=0}^{n-1}$ be a system of natural projectors with $\\displaystyle x = \\sum\\limits_{q=0}^{n-1} P_q x$ for all $x\\in X$.\n\nWe established that a set $(a^{(j)})_{j=0}^{n-1}$ with\n$$\n\\max\\limits_{0\\le j \\le n-1}\\left\\{\\mathop{\\overline{\\lim}}\\limits_{m\\to\\infty} \\sqrt[m]{\\left|\\frac{a_{m}^{(j)}}{\\alpha_m}\\right|}\\right\\}<\\infty\n$$\nand a set $(b^{(j)})_{j=0}^{n-1}$ of elements of the space $X$ satisfy the system of equalities\n$$\nb^{(j)}=a^{(j)}+\\sum\\limits_{k=0}^{n-1}({\\mathcal I}_{\\alpha}^{n-k-1} a^{(k)}) \\ast {(P_{k}b^{(j)})}, \\quad j = 0, 1, ... \\, , \\, n-1,\n$$\nif and only if they satisfy the system of equalities\n$$\nb^{(j)}=a^{(j)}+\\sum\\limits_{k=0}^{n-1}({\\mathcal I}_{\\alpha}^{n-k-1} b^{(k)}) \\ast {(P_{k}a^{(j)})}, \\quad j = 0, 1, ... \\, , \\, n-1.\n$$\n\nNote that the assumption on the elements $(a^{(j)})_{j=0}^{n-1}$ of the space $X$ allows us to reduce the solution of this problem to the solution of an analogous problem in the space of functions analytic in a disc.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.01.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of the equivalence of two systems with $n$ convolutional equalities arose in investigation of the conditions of similarity in spaces of sequences of operators which are left inverse to the $n$-th degree of the generalized integration operator. In this paper we solve this problem. Note that we first prove the equivalence of two corresponding systems with $n$ equalities in the spaces of analytic functions, and then, using this statement, the main result of paper is obtained. Let $X$ be a vector space of sequences of complex numbers with K$\ddot{\rm o}$the normal topology from a wide class of spaces, ${\mathcal I}_{\alpha}$ be a generalized integration operator on $X$, $\ast$ be a nontrivial convolution for ${\mathcal I}_{\alpha}$ in $X$, and $(P_q)_{q=0}^{n-1}$ be a system of natural projectors with $\displaystyle x = \sum\limits_{q=0}^{n-1} P_q x$ for all $x\in X$. We established that a set $(a^{(j)})_{j=0}^{n-1}$ with $$ \max\limits_{0\le j \le n-1}\left\{\mathop{\overline{\lim}}\limits_{m\to\infty} \sqrt[m]{\left|\frac{a_{m}^{(j)}}{\alpha_m}\right|}\right\}<\infty $$ and a set $(b^{(j)})_{j=0}^{n-1}$ of elements of the space $X$ satisfy the system of equalities $$ b^{(j)}=a^{(j)}+\sum\limits_{k=0}^{n-1}({\mathcal I}_{\alpha}^{n-k-1} a^{(k)}) \ast {(P_{k}b^{(j)})}, \quad j = 0, 1, ... \, , \, n-1, $$ if and only if they satisfy the system of equalities $$ b^{(j)}=a^{(j)}+\sum\limits_{k=0}^{n-1}({\mathcal I}_{\alpha}^{n-k-1} b^{(k)}) \ast {(P_{k}a^{(j)})}, \quad j = 0, 1, ... \, , \, n-1. $$ Note that the assumption on the elements $(a^{(j)})_{j=0}^{n-1}$ of the space $X$ allows us to reduce the solution of this problem to the solution of an analogous problem in the space of functions analytic in a disc.
序列空间中若干卷积等式的等价性
两个系统的等价问题 $n$ 卷积等式是在研究左逆算子序列空间的相似性条件时产生的 $n$广义积分算子的第n次。本文解决了这一问题。注意,我们首先证明了两个对应系统的等价性 $n$ 利用解析函数空间中的等式,得到了本文的主要结论。让 $X$ 是含有K的复数序列的向量空间$\ddot{\rm o}$广义空间的标准拓扑,${\mathcal I}_{\alpha}$ 是上的广义积分算子 $X$, $\ast$ 是一个非平凡卷积 ${\mathcal I}_{\alpha}$ 在 $X$,和 $(P_q)_{q=0}^{n-1}$ 成为一个自然投射系统 $\displaystyle x = \sum\limits_{q=0}^{n-1} P_q x$ 对所有人 $x\in X$我们建立了一个集合 $(a^{(j)})_{j=0}^{n-1}$ 有$$\max\limits_{0\le j \le n-1}\left\{\mathop{\overline{\lim}}\limits_{m\to\infty} \sqrt[m]{\left|\frac{a_{m}^{(j)}}{\alpha_m}\right|}\right\}<\infty$$还有一组 $(b^{(j)})_{j=0}^{n-1}$ 空间的元素 $X$ 满足方程组的等式$$b^{(j)}=a^{(j)}+\sum\limits_{k=0}^{n-1}({\mathcal I}_{\alpha}^{n-k-1} a^{(k)}) \ast {(P_{k}b^{(j)})}, \quad j = 0, 1, ... \, , \, n-1,$$当且仅当它们满足等式方程组$$b^{(j)}=a^{(j)}+\sum\limits_{k=0}^{n-1}({\mathcal I}_{\alpha}^{n-k-1} b^{(k)}) \ast {(P_{k}a^{(j)})}, \quad j = 0, 1, ... \, , \, n-1.$$注意对元素的假设 $(a^{(j)})_{j=0}^{n-1}$ 空间的 $X$ 使我们可以将这个问题的解简化为圆盘上解析函数空间中类似问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信