Efficient Algorithms for Context Query Evaluation over a Tagged Corpus

Jérémy Félix Barbay, A. López-Ortiz
{"title":"Efficient Algorithms for Context Query Evaluation over a Tagged Corpus","authors":"Jérémy Félix Barbay, A. López-Ortiz","doi":"10.1109/SCCC.2009.16","DOIUrl":null,"url":null,"abstract":"We present an optimal adaptive algorithm for context queries in tagged content. The queries consist of locating instances of a tag within a context specified by the query using patterns with preorder, ancestor-descendant and proximity operators in the document tree implied by the tagged content. The time taken to resolve a query $Q$ on a document tree $T$ is logarithmic in the size of $T$, proportional to the size of $Q$, and to the difficulty of the combination of $Q$ with $T$, as measured by the minimal size of a certificate of the answer. The performance of the algorithm is no worse than the classical worst-case optimal, while provably better on simpler queries and corpora. More formally, the algorithm runs in time $\\bigo(\\difficulty\\nbkeywords\\lg(\\nbobjects/\\difficulty\\nbkeywords))$ in the standard RAM model and in time $\\bigo(\\difficulty\\nbkeywords\\lg\\lg\\min(\\nbobjects,\\nblabels))$ in the $\\Theta(\\lg(\\nbobjects))$-word RAM model, where $\\nbkeywords$ is the number of edges in the query, $\\difficulty$ is the minimum number of operations required to certify the answer to the query, $\\nbobjects$ is the number of nodes in the tree, and $\\nblabels$ is the number of labels indexed.","PeriodicalId":398661,"journal":{"name":"2009 International Conference of the Chilean Computer Science Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of the Chilean Computer Science Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC.2009.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present an optimal adaptive algorithm for context queries in tagged content. The queries consist of locating instances of a tag within a context specified by the query using patterns with preorder, ancestor-descendant and proximity operators in the document tree implied by the tagged content. The time taken to resolve a query $Q$ on a document tree $T$ is logarithmic in the size of $T$, proportional to the size of $Q$, and to the difficulty of the combination of $Q$ with $T$, as measured by the minimal size of a certificate of the answer. The performance of the algorithm is no worse than the classical worst-case optimal, while provably better on simpler queries and corpora. More formally, the algorithm runs in time $\bigo(\difficulty\nbkeywords\lg(\nbobjects/\difficulty\nbkeywords))$ in the standard RAM model and in time $\bigo(\difficulty\nbkeywords\lg\lg\min(\nbobjects,\nblabels))$ in the $\Theta(\lg(\nbobjects))$-word RAM model, where $\nbkeywords$ is the number of edges in the query, $\difficulty$ is the minimum number of operations required to certify the answer to the query, $\nbobjects$ is the number of nodes in the tree, and $\nblabels$ is the number of labels indexed.
标记语料库上上下文查询评估的高效算法
我们提出了一种最优的自适应算法,用于标记内容的上下文查询。这些查询包括在查询指定的上下文中定位标记的实例,使用带有标记内容所隐含的文档树中的预购、祖先-后代和接近操作符的模式。在文档树$T$上解析查询$Q$所花费的时间与$T$的大小成对数关系,与$Q$的大小成正比,并与$Q$与$T$组合的难度成正比,以答案证书的最小大小来衡量。该算法的性能并不比经典的最坏情况最优算法差,而且在更简单的查询和语料库上表现得更好。更正式地说,该算法在标准RAM模型中运行时间为$\bigo(\difficulty\nbkeywords\lg(\nbobjects/\difficulty\nbkeywords))$,在$\Theta(\lg(\nbobjects))$ -word RAM模型中运行时间为$\bigo(\difficulty\nbkeywords\lg\lg\min(\nbobjects,\nblabels))$,其中$\nbkeywords$是查询中的边数,$\difficulty$是验证查询答案所需的最小操作数,$\nbobjects$是树中的节点数,$\nblabels$是索引的标签数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信