Single sample face identification utilizing sparse discriminative multi manifold embedding

Z. Azimifar, A. Nazemi, Fatemeh Shahali
{"title":"Single sample face identification utilizing sparse discriminative multi manifold embedding","authors":"Z. Azimifar, A. Nazemi, Fatemeh Shahali","doi":"10.1109/AISP.2017.8324123","DOIUrl":null,"url":null,"abstract":"This paper describes three methods to improve single sample dataset face identification. The recent approaches to address this issue use intensity and do not guarantee for the high accuracy under uncontrolled conditions. This research presents an approach based on Sparse Discriminative Multi Manifold Embedding (SDMME), which uses feature extraction rather than intensity and normalization for pre-processing to reduce the effects of uncontrolled condition such as illumination. In the worst case of illumination this study improves identification accuracy about 17% compare to current methods.","PeriodicalId":386952,"journal":{"name":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Artificial Intelligence and Signal Processing Conference (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2017.8324123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes three methods to improve single sample dataset face identification. The recent approaches to address this issue use intensity and do not guarantee for the high accuracy under uncontrolled conditions. This research presents an approach based on Sparse Discriminative Multi Manifold Embedding (SDMME), which uses feature extraction rather than intensity and normalization for pre-processing to reduce the effects of uncontrolled condition such as illumination. In the worst case of illumination this study improves identification accuracy about 17% compare to current methods.
基于稀疏判别多流形嵌入的单样本人脸识别
本文介绍了三种改进单样本数据集人脸识别的方法。最近解决这个问题的方法使用强度,并不能保证在不受控制的条件下的高精度。本文提出了一种基于稀疏判别多流形嵌入(SDMME)的方法,该方法采用特征提取而不是强度和归一化进行预处理,以减少光照等非受控条件的影响。在光照最差的情况下,与目前的方法相比,该研究提高了约17%的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信