{"title":"Image restoration by minimizing objective functions with nonsmooth data-fidelity terms","authors":"M. Nikolova","doi":"10.1109/VLSM.2001.938876","DOIUrl":null,"url":null,"abstract":"We present a theoretical study of the recovery of images x from noisy data y by minimizing a regularized cost-function F(x,y)=/spl Psi/(x,y)+/spl alpha//spl Phi/(x), where /spl Psi/ is a data-fidelity term, /spl Phi/ is a smooth regularisation term and /spl alpha/>0 is a parameter. Generally /spl Psi/ is a smooth function; only a few papers make an exception. Non-smooth data-fidelity terms are avoided in image processing. In spite of this, we consider both smooth and non-smooth data-fidelity terms. Our ambition is to catch essential features exhibited by the local minimizers of F in relation with the smoothness of /spl Psi/. Cost-functions with non-smooth data-fidelity exhibit a strong mathematical property which can be used in various ways. We then construct a cost-function allowing aberrant data to be detected and selectively smoothed. The obtained results advocate the use of non-smooth data-fidelity terms.","PeriodicalId":445975,"journal":{"name":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSM.2001.938876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
We present a theoretical study of the recovery of images x from noisy data y by minimizing a regularized cost-function F(x,y)=/spl Psi/(x,y)+/spl alpha//spl Phi/(x), where /spl Psi/ is a data-fidelity term, /spl Phi/ is a smooth regularisation term and /spl alpha/>0 is a parameter. Generally /spl Psi/ is a smooth function; only a few papers make an exception. Non-smooth data-fidelity terms are avoided in image processing. In spite of this, we consider both smooth and non-smooth data-fidelity terms. Our ambition is to catch essential features exhibited by the local minimizers of F in relation with the smoothness of /spl Psi/. Cost-functions with non-smooth data-fidelity exhibit a strong mathematical property which can be used in various ways. We then construct a cost-function allowing aberrant data to be detected and selectively smoothed. The obtained results advocate the use of non-smooth data-fidelity terms.