Short Time Forecasting for Wind Power Generation Using Artificial Neural Network

Jannet Jamii, M. Mansouri, M. Mimouni
{"title":"Short Time Forecasting for Wind Power Generation Using Artificial Neural Network","authors":"Jannet Jamii, M. Mansouri, M. Mimouni","doi":"10.1109/SSD54932.2022.9955856","DOIUrl":null,"url":null,"abstract":"Due to the nature stochastic of wind, wind power generation present a significant issue in electric system stability. Thus, wind power forecasting plays a key in dealing with the challenges of power system stability. Accurate wind power forecasting reduces the need for reserve power for balancing energy to integrate wind power. Also, it enables to better dispatch and scheduling power. In this paper, we study a short-term forecasting of wind power generation. An Artificial Neural Network(ANN) is proposed for prediction purposes. A meteorological conditions wind speed, temperature and pression composes the model input. The ANN based parameters are optimized to get its output approximate future of wind power generation. The normalized RMSE and MAE criteria are computed to assess the ANN model.","PeriodicalId":253898,"journal":{"name":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD54932.2022.9955856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the nature stochastic of wind, wind power generation present a significant issue in electric system stability. Thus, wind power forecasting plays a key in dealing with the challenges of power system stability. Accurate wind power forecasting reduces the need for reserve power for balancing energy to integrate wind power. Also, it enables to better dispatch and scheduling power. In this paper, we study a short-term forecasting of wind power generation. An Artificial Neural Network(ANN) is proposed for prediction purposes. A meteorological conditions wind speed, temperature and pression composes the model input. The ANN based parameters are optimized to get its output approximate future of wind power generation. The normalized RMSE and MAE criteria are computed to assess the ANN model.
基于人工神经网络的风力发电短时预测
由于风的随机性,风力发电成为电力系统稳定中的一个重要问题。因此,风电预测是应对电力系统稳定性挑战的关键。准确的风电预测减少了平衡能源对备用电力的需求来整合风电。此外,它还可以实现更好的调度能力。本文研究了风力发电的短期预测问题。提出了一种用于预测的人工神经网络(ANN)。气象条件风速、温度和气压构成模型输入。对基于人工神经网络的参数进行了优化,得到了近似未来风力发电的输出。计算归一化RMSE和MAE标准来评估人工神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信