A multi-channel recurrent network for synthesizing struck coupled-string musical instruments

Wei-Chen Chang, A. Su
{"title":"A multi-channel recurrent network for synthesizing struck coupled-string musical instruments","authors":"Wei-Chen Chang, A. Su","doi":"10.1109/NNSP.2002.1030079","DOIUrl":null,"url":null,"abstract":"Struck string instruments, such as pianos, usually have groups of strings with each group terminated at a common bridge. Because of the strong coupling phenomenon, the produced tones exhibit highly complex amplitude modulation patterns. Therefore, it is difficult to determine synthesis model parameters such that the synthesized tones can match recorded tones. A multi-channel recurrent network is proposed based on three previous works: the coupled-string model, the commuted piano synthesis method and the IIR synthesis method. This work attempts to extract automatically the synthesis parameters by using a neural-network training algorithm without the knowledge of the physical properties of the instruments. Computer simulations show encouraging results.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Struck string instruments, such as pianos, usually have groups of strings with each group terminated at a common bridge. Because of the strong coupling phenomenon, the produced tones exhibit highly complex amplitude modulation patterns. Therefore, it is difficult to determine synthesis model parameters such that the synthesized tones can match recorded tones. A multi-channel recurrent network is proposed based on three previous works: the coupled-string model, the commuted piano synthesis method and the IIR synthesis method. This work attempts to extract automatically the synthesis parameters by using a neural-network training algorithm without the knowledge of the physical properties of the instruments. Computer simulations show encouraging results.
用于合成敲击耦合弦乐器的多通道循环网络
弦乐器,如钢琴,通常有一组弦,每一组在一个共同的桥上结束。由于强耦合现象,产生的音调表现出高度复杂的调幅模式。因此,很难确定合成模型参数,以使合成的音调与录制的音调相匹配。在耦合弦模型、交换钢琴合成方法和IIR合成方法的基础上,提出了一种多通道递归网络。这项工作试图在不了解仪器物理特性的情况下,通过使用神经网络训练算法自动提取合成参数。计算机模拟显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信