Enhanced Low Voltage Ride Through Capability for Grid Connected Wind Energy Conversion System

M. Alsumiri, R. Althomali
{"title":"Enhanced Low Voltage Ride Through Capability for Grid Connected Wind Energy Conversion System","authors":"M. Alsumiri, R. Althomali","doi":"10.31763/ijrcs.v1i3.441","DOIUrl":null,"url":null,"abstract":"It is obvious that the current era has received much attention in the fields of science and technology, besides the continuous endeavor to provide environmentally friendly and resource-saving alternatives for conventional energy conversion systems. The rapid development of Wind Energy Conversion Systems (WECS) has made Permanent Magnet Synchronous Generator (PMSG) a primer choice because of its advantages. The current trend on WECS necessitates wind turbines to maintain continuous operation during voltage drops, which is referred to as Low Voltage Ride Through (LVRT). The PMSG control technique is a widely used approach for improving conversion efficiency as well as LVRT capability. This paper provides LVRT and power enhancement for grid-connected PMSG based WECS using control techniques. The LVRT capability has been investigated by using PI and Residue controllers. The simulation results show improved active power delivery and better LVRT capability during voltage dips when the Residue controller is implemented.","PeriodicalId":409364,"journal":{"name":"International Journal of Robotics and Control Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/ijrcs.v1i3.441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is obvious that the current era has received much attention in the fields of science and technology, besides the continuous endeavor to provide environmentally friendly and resource-saving alternatives for conventional energy conversion systems. The rapid development of Wind Energy Conversion Systems (WECS) has made Permanent Magnet Synchronous Generator (PMSG) a primer choice because of its advantages. The current trend on WECS necessitates wind turbines to maintain continuous operation during voltage drops, which is referred to as Low Voltage Ride Through (LVRT). The PMSG control technique is a widely used approach for improving conversion efficiency as well as LVRT capability. This paper provides LVRT and power enhancement for grid-connected PMSG based WECS using control techniques. The LVRT capability has been investigated by using PI and Residue controllers. The simulation results show improved active power delivery and better LVRT capability during voltage dips when the Residue controller is implemented.
并网风能转换系统的低压穿越能力增强
很明显,当今时代在科技领域受到了极大的关注,除了不断努力为传统的能源转换系统提供环境友好和资源节约的替代品之外。风能转换系统(WECS)的快速发展使得永磁同步发电机(PMSG)因其优势而成为首选。目前的趋势是,风力发电机必须在电压下降期间保持连续运行,这被称为低电压穿越(LVRT)。PMSG控制技术是一种广泛应用的提高转换效率和LVRT性能的方法。本文利用控制技术为并网PMSG型WECS提供了LVRT和功率增强。采用PI控制器和残留控制器对LVRT性能进行了研究。仿真结果表明,残差控制器改善了系统的有功功率输出,提高了LVRT在电压下降时的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信