On a Question about Generalized Congruence Subgroups

A. Vladimir
{"title":"On a Question about Generalized Congruence Subgroups","authors":"A. Vladimir","doi":"10.17516/1997-1397-2018-11-1-66-69","DOIUrl":null,"url":null,"abstract":"Elementary net (carpet) σ = (σij) is called admissible (closed) if the elementary net (carpet) group E(σ) does not contain a new elementary transvections. This work is related to the problem proposed by Y.N.Nuzhin in connection with the problem 15.46 from the Kourovka notebook proposed by V.M.Levchuk (admissibility (closure) of the elementary net (carpet) σ = (σij) over a field K). An example of field K and the net σ = (σij) of order n over the field K are presented so that subgroup ⟨tij(σij), tji(σji)⟩ is not coincident with group E(σ) ∩ ⟨tij(K), tji(K)⟩.","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2018-11-1-66-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Elementary net (carpet) σ = (σij) is called admissible (closed) if the elementary net (carpet) group E(σ) does not contain a new elementary transvections. This work is related to the problem proposed by Y.N.Nuzhin in connection with the problem 15.46 from the Kourovka notebook proposed by V.M.Levchuk (admissibility (closure) of the elementary net (carpet) σ = (σij) over a field K). An example of field K and the net σ = (σij) of order n over the field K are presented so that subgroup ⟨tij(σij), tji(σji)⟩ is not coincident with group E(σ) ∩ ⟨tij(K), tji(K)⟩.
关于广义同余子群的一个问题
如果初等网(地毯)群E(σ)不包含新的初等截断,则称初等网(地毯)σ = (σij)为可容许的(闭的)。这项工作与Y.N.Nuzhin提出的与V.M.Levchuk提出的Kourovka笔记本中的问题15.46有关的问题有关(域K上初等网(地毯)σ = (σij)的可容许性(闭包))。给出了域K和域K上n阶的网σ = (σij)的一个例子,使得子群⟨tij(σij), tji(σji)⟩不符合群E(σ)∩⟨tij(K), tji(K)⟩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信