Fast growing hough forest as a stable model for object detection

Antoine Tran, A. Manzanera
{"title":"Fast growing hough forest as a stable model for object detection","authors":"Antoine Tran, A. Manzanera","doi":"10.1109/IPTA.2016.7820960","DOIUrl":null,"url":null,"abstract":"Hough Forest is a framework combining Hough Transform and Random Forest for object detection. The purpose of the present paper is to improve the efficiency and reliability of the original framework by the mean of two contributions. First, instead of generating the image samples by drawing patches randomly from the training set, we bias this step toward the most relevant image content by selecting a proportion of patches from a geometrical criterion. Second, during the creation of non-leaf-nodes of the trees, instead of sampling uniformly the parameter space for choosing the binary tests aimed at splitting the set of image samples, we choose them according to a probability map constructed from the sample set. We aim to drastically reduce the training time without impacting the accuracy, and decreasing the variability of the produced detectors. The interest of this improved model is shown in the context of car and pedestrian detection by evaluating it on academic datasets.","PeriodicalId":123429,"journal":{"name":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2016.7820960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hough Forest is a framework combining Hough Transform and Random Forest for object detection. The purpose of the present paper is to improve the efficiency and reliability of the original framework by the mean of two contributions. First, instead of generating the image samples by drawing patches randomly from the training set, we bias this step toward the most relevant image content by selecting a proportion of patches from a geometrical criterion. Second, during the creation of non-leaf-nodes of the trees, instead of sampling uniformly the parameter space for choosing the binary tests aimed at splitting the set of image samples, we choose them according to a probability map constructed from the sample set. We aim to drastically reduce the training time without impacting the accuracy, and decreasing the variability of the produced detectors. The interest of this improved model is shown in the context of car and pedestrian detection by evaluating it on academic datasets.
快速生长的针叶林作为目标检测的稳定模型
霍夫森林是一个结合霍夫变换和随机森林的目标检测框架。本文的目的是通过两个贡献的均值来提高原框架的效率和可靠性。首先,我们不是通过从训练集中随机绘制补丁来生成图像样本,而是通过从几何准则中选择一定比例的补丁来将这一步偏向于最相关的图像内容。其次,在树的非叶节点创建过程中,我们根据样本集构造的概率图来选择二值测试,而不是统一采样用于选择分割图像样本集的参数空间。我们的目标是在不影响精度的情况下大幅减少训练时间,并减少产生的检测器的可变性。通过在学术数据集上对该改进模型进行评估,可以在汽车和行人检测的背景下显示出该模型的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信