Dynamic three-bin real AdaBoost using biased classifiers: An application in face detection

R. Abiantun, M. Savvides
{"title":"Dynamic three-bin real AdaBoost using biased classifiers: An application in face detection","authors":"R. Abiantun, M. Savvides","doi":"10.1109/BTAS.2009.5339038","DOIUrl":null,"url":null,"abstract":"In this paper, we briefly review AdaBoost and expand on the Discrete version by building weak classifiers from a pair of biased classifiers which enable the weak classifier to abstain from classifying some samples. We show that this approach turns into a 3-bin Real AdaBoost approach where the bin sizes and positions are set by the bias parameters selected by the user and dynamically change with every iteration which make it different from the traditional Real AdaBoost. We apply this method to face detection more specifically the Viola-Jones approach to detecting faces with Haar-like features and empirically show that our method can help improving the generalization ability by reducing the testing error of the final classifier. We benchmark the results on the MIT+CMU database.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we briefly review AdaBoost and expand on the Discrete version by building weak classifiers from a pair of biased classifiers which enable the weak classifier to abstain from classifying some samples. We show that this approach turns into a 3-bin Real AdaBoost approach where the bin sizes and positions are set by the bias parameters selected by the user and dynamically change with every iteration which make it different from the traditional Real AdaBoost. We apply this method to face detection more specifically the Viola-Jones approach to detecting faces with Haar-like features and empirically show that our method can help improving the generalization ability by reducing the testing error of the final classifier. We benchmark the results on the MIT+CMU database.
动态三箱真实AdaBoost使用有偏差分类器:在人脸检测中的应用
在本文中,我们简要地回顾了AdaBoost,并通过从一对有偏见的分类器中构建弱分类器来扩展离散版本,使弱分类器能够避免对某些样本进行分类。我们表明,这种方法变成了一个3-bin的Real AdaBoost方法,其中bin的大小和位置由用户选择的偏差参数设置,并随着每次迭代而动态变化,使其与传统的Real AdaBoost不同。我们将该方法应用于人脸检测,更具体地说,Viola-Jones方法用于检测具有haar样特征的人脸,并通过经验表明,我们的方法可以通过减少最终分类器的测试误差来帮助提高泛化能力。我们在MIT+CMU数据库上对结果进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信