Meta-GNN: Metagraph Neural Network for Semi-supervised learning in Attributed Heterogeneous Information Networks

Aravind Sankar, Xinyang Zhang, K. Chang
{"title":"Meta-GNN: Metagraph Neural Network for Semi-supervised learning in Attributed Heterogeneous Information Networks","authors":"Aravind Sankar, Xinyang Zhang, K. Chang","doi":"10.1145/3341161.3342859","DOIUrl":null,"url":null,"abstract":"Heterogeneous Information Networks (HINs) comprise nodes of different types inter-connected through diverse semantic relationships. In many real-world applications, nodes in information networks are often associated with additional attributes, resulting in Attributed HINs (or AHINs). In this paper, we study semi-supervised learning (SSL) on AHINs to classify nodes based on their structure, node types and attributes, given limited supervision. Recently, Graph Convolutional Networks (GCNs) have achieved impressive results in several graph-based SSL tasks. However, they operate on homogeneous networks, while being completely agnostic to the semantics of typed nodes and relationships in real-world HINs. In this paper, we seek to bridge the gap between semantic-rich HINs and the neighborhood aggregation paradigm of graph neural networks, to generalize GCNs through metagraph semantics. We propose a novel metagraph convolution operation to extract features from local metagraph-structured neighborhoods, thus capturing semantic higher-order relationships in AHINs. Our proposed neural architecture Meta-GNN extracts features of diverse semantics by utilizing multiple metagraphs, and employs a novel metagraph-attention module to learn personalized metagraph preferences for each node. Our semi-supervised node classification experiments on multiple real-world AHIN datasets indicate significant performance gains of 6% Micro-F1 on average over state-of-the-art AHIN baselines. Visualizations on metagraph attention weights yield interpretable insights into their relative task-specific importance.","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

Heterogeneous Information Networks (HINs) comprise nodes of different types inter-connected through diverse semantic relationships. In many real-world applications, nodes in information networks are often associated with additional attributes, resulting in Attributed HINs (or AHINs). In this paper, we study semi-supervised learning (SSL) on AHINs to classify nodes based on their structure, node types and attributes, given limited supervision. Recently, Graph Convolutional Networks (GCNs) have achieved impressive results in several graph-based SSL tasks. However, they operate on homogeneous networks, while being completely agnostic to the semantics of typed nodes and relationships in real-world HINs. In this paper, we seek to bridge the gap between semantic-rich HINs and the neighborhood aggregation paradigm of graph neural networks, to generalize GCNs through metagraph semantics. We propose a novel metagraph convolution operation to extract features from local metagraph-structured neighborhoods, thus capturing semantic higher-order relationships in AHINs. Our proposed neural architecture Meta-GNN extracts features of diverse semantics by utilizing multiple metagraphs, and employs a novel metagraph-attention module to learn personalized metagraph preferences for each node. Our semi-supervised node classification experiments on multiple real-world AHIN datasets indicate significant performance gains of 6% Micro-F1 on average over state-of-the-art AHIN baselines. Visualizations on metagraph attention weights yield interpretable insights into their relative task-specific importance.
Meta-GNN:属性异构信息网络中半监督学习的元图神经网络
异构信息网络由不同类型的节点通过不同的语义关系相互连接而成。在许多实际的应用程序中,信息网络中的节点通常与其他属性相关联,从而产生有属性的HINs(或AHINs)。本文研究了AHINs上的半监督学习(SSL),在有限监督的情况下,根据节点的结构、节点类型和属性对节点进行分类。最近,图卷积网络(GCNs)在几个基于图的SSL任务中取得了令人印象深刻的结果。然而,它们在同构网络上运行,而完全不知道实际HINs中类型化节点和关系的语义。在本文中,我们试图弥合语义丰富的HINs与图神经网络的邻域聚合范式之间的差距,通过元语义泛化GCNs。我们提出了一种新的元图卷积操作,从局部元图结构邻域中提取特征,从而捕获AHINs中的语义高阶关系。我们提出的Meta-GNN神经结构通过利用多个元图提取不同语义的特征,并采用新颖的元图关注模块来学习每个节点的个性化元图偏好。我们在多个真实世界AHIN数据集上进行的半监督节点分类实验表明,与最先进的AHIN基线相比,其性能平均提高了6% Micro-F1。对元图注意权重的可视化产生了对其相对任务特定重要性的可解释的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信