$K$-Theory of Azumaya algebras

J. Millar
{"title":"$K$-Theory of Azumaya algebras","authors":"J. Millar","doi":"10.33232/bims.0066.27.28","DOIUrl":null,"url":null,"abstract":"For an Azumaya algebra $A$ which is free over its centre $R$, we prove that the $K$-theory of $A$ is isomorphic to $K$-theory of $R$ up to its rank torsion. We observe that a graded central simple algebra, graded by an abelian group, is a graded Azumaya algebra and it is free over its centre. So the above result, from the non-graded setting, covers graded central simple algebras. For a graded central simple algebra $A$, we can also consider graded projective modules. Let $\\Pgr (R)$ be the category of graded finitely generated projective $R$-modules and $K_i, i\\geq 0$, be the Quillen $K$-groups. Then $K_i^{\\gr} (R)$ is defined to be $K_i( \\Pgr (R))$. We give some examples to show that the graded $K$-theory of $A$ does not necessarily coincide with its usual $K$-theory. For a graded Azumaya algebra $A$, free over its centre $R$ and subject to some conditions, we show that $K_i^{\\gr} (A)$ is ``very close'' to $K_i^{\\gr}(R)$. Further, we consider additive commutators in the setting of graded division algebras. For a graded division algebra $D$ with a totally ordered abelian grade group, we show how the submodule generated by the additive commutators in $QD$ relates to that of $D$, where $QD$ is the quotient division ring.","PeriodicalId":103198,"journal":{"name":"Irish Mathematical Society Bulletin","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irish Mathematical Society Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33232/bims.0066.27.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

For an Azumaya algebra $A$ which is free over its centre $R$, we prove that the $K$-theory of $A$ is isomorphic to $K$-theory of $R$ up to its rank torsion. We observe that a graded central simple algebra, graded by an abelian group, is a graded Azumaya algebra and it is free over its centre. So the above result, from the non-graded setting, covers graded central simple algebras. For a graded central simple algebra $A$, we can also consider graded projective modules. Let $\Pgr (R)$ be the category of graded finitely generated projective $R$-modules and $K_i, i\geq 0$, be the Quillen $K$-groups. Then $K_i^{\gr} (R)$ is defined to be $K_i( \Pgr (R))$. We give some examples to show that the graded $K$-theory of $A$ does not necessarily coincide with its usual $K$-theory. For a graded Azumaya algebra $A$, free over its centre $R$ and subject to some conditions, we show that $K_i^{\gr} (A)$ is ``very close'' to $K_i^{\gr}(R)$. Further, we consider additive commutators in the setting of graded division algebras. For a graded division algebra $D$ with a totally ordered abelian grade group, we show how the submodule generated by the additive commutators in $QD$ relates to that of $D$, where $QD$ is the quotient division ring.
$K$- Azumaya代数理论
对于Azumaya代数 $A$ 哪个在它的中心是自由的 $R$,我们证明 $K$-理论 $A$ 是同构的 $K$-理论 $R$ 直到它的秩扭转。我们观察到一个被阿贝尔群分级的分级中心简单代数是一个分级Azumaya代数,它在其中心上是自由的。因此,上述结果,从非分级设置,涵盖了分级中心简单代数。对于一个分级的中心简单代数 $A$,我们也可以考虑梯度投影模。让 $\Pgr (R)$ 是分级有限生成投影的范畴 $R$-模块和 $K_i, i\geq 0$做奎伦吧 $K$-组。然后 $K_i^{\gr} (R)$ 定义为 $K_i( \Pgr (R))$. 我们给出了一些例子来说明 $K$-理论 $A$ 未必与往常相符 $K$-理论。对于一个分级Azumaya代数 $A$,在它的中心自由 $R$ 在某些条件下,我们证明了这一点 $K_i^{\gr} (A)$ “非常接近”是 $K_i^{\gr}(R)$. 进一步,我们考虑了梯度除法代数集合中的加性交换子。对于一个分级除法代数 $D$ 对于一个完全有序的阿贝尔等级群,我们给出了由中加性交换子生成的子模 $QD$ 与…有关 $D$,其中 $QD$ 是商除法环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信