Chronic Kidney Disease analysis using data mining classification techniques

Veenita Kunwar, Khushboo Chandel, A. Sabitha, Abhay Bansal
{"title":"Chronic Kidney Disease analysis using data mining classification techniques","authors":"Veenita Kunwar, Khushboo Chandel, A. Sabitha, Abhay Bansal","doi":"10.1109/CONFLUENCE.2016.7508132","DOIUrl":null,"url":null,"abstract":"Data mining has been a current trend for attaining diagnostic results. Huge amount of unmined data is collected by the healthcare industry in order to discover hidden information for effective diagnosis and decision making. Data mining is the process of extracting hidden information from massive dataset, categorizing valid and unique patterns in data. There are many data mining techniques like clustering, classification, association analysis, regression etc. The objective of our paper is to predict Chronic Kidney Disease(CKD) using classification techniques like Naive Bayes and Artificial Neural Network(ANN). The experimental results implemented in Rapidminer tool show that Naive Bayes produce more accurate results than Artificial Neural Network.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"163 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

Abstract

Data mining has been a current trend for attaining diagnostic results. Huge amount of unmined data is collected by the healthcare industry in order to discover hidden information for effective diagnosis and decision making. Data mining is the process of extracting hidden information from massive dataset, categorizing valid and unique patterns in data. There are many data mining techniques like clustering, classification, association analysis, regression etc. The objective of our paper is to predict Chronic Kidney Disease(CKD) using classification techniques like Naive Bayes and Artificial Neural Network(ANN). The experimental results implemented in Rapidminer tool show that Naive Bayes produce more accurate results than Artificial Neural Network.
使用数据挖掘分类技术分析慢性肾脏病
数据挖掘已成为获得诊断结果的当前趋势。医疗保健行业收集了大量未挖掘的数据,以发现隐藏的信息,从而进行有效的诊断和决策。数据挖掘是从海量数据集中提取隐藏信息,对数据中有效且唯一的模式进行分类的过程。有许多数据挖掘技术,如聚类、分类、关联分析、回归等。本文的目的是利用朴素贝叶斯和人工神经网络(ANN)等分类技术预测慢性肾脏疾病(CKD)。在Rapidminer工具上实现的实验结果表明,朴素贝叶斯比人工神经网络产生更准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信