A New Method for Time Series Signal Decomposition

Kaiguo Fan, Bojian Xu, Ming Zhang, Mingxing Nan, Jianguo Huang
{"title":"A New Method for Time Series Signal Decomposition","authors":"Kaiguo Fan, Bojian Xu, Ming Zhang, Mingxing Nan, Jianguo Huang","doi":"10.1109/CISP-BMEI.2018.8633021","DOIUrl":null,"url":null,"abstract":"Because extending methods play a very important part in Empirical Mode Decomposition (EMD) given by Huang et al in 1998. One new efficient method for several time series signal decomposition based on EMD is presented in this paper. The method is tested to several time series decompositions. We have compared the results with those of N. E. Huang et al. and D. J. Huang et al. The comparison shows that this method is more feasible and more precise.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Because extending methods play a very important part in Empirical Mode Decomposition (EMD) given by Huang et al in 1998. One new efficient method for several time series signal decomposition based on EMD is presented in this paper. The method is tested to several time series decompositions. We have compared the results with those of N. E. Huang et al. and D. J. Huang et al. The comparison shows that this method is more feasible and more precise.
时间序列信号分解的一种新方法
因为扩展方法在Huang等人1998年提出的经验模态分解(EMD)中起着非常重要的作用。提出了一种新的基于EMD的多时间序列信号分解方法。该方法对多个时间序列分解进行了验证。我们将结果与n.e. Huang et al.和d.j. Huang et al.的结果进行了比较。对比表明,该方法更可行,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信