Multidimensional Dataflow Graph Modeling and Mapping for Efficient GPU Implementation

Lai-Huei Wang, Chung-Ching Shen, G. Seetharaman, K. Palaniappan, S. Bhattacharyya
{"title":"Multidimensional Dataflow Graph Modeling and Mapping for Efficient GPU Implementation","authors":"Lai-Huei Wang, Chung-Ching Shen, G. Seetharaman, K. Palaniappan, S. Bhattacharyya","doi":"10.1109/SiPS.2012.10","DOIUrl":null,"url":null,"abstract":"Multidimensional synchronous dataflow (MDSDF) provides an effective model of computation for a variety of multidimensional DSP systems that have static dataflow structures. In this paper, we develop new methods for optimized implementation of MDSDF graphs on embedded platforms that employ multiple levels of parallelism to enhance performance at different levels of granularity. Our approach allows designers to systematically represent and transform multi-level parallelism specifications from a common, MDSDF-based application level model. We demonstrate our methods with a case study of image histogram implementation on a graphics processing unit (GPU). Experimental results from this study show that our approach can be used to derive fast GPU implementations, and enhance trade-off analysis during design space exploration.","PeriodicalId":286060,"journal":{"name":"2012 IEEE Workshop on Signal Processing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Workshop on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2012.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Multidimensional synchronous dataflow (MDSDF) provides an effective model of computation for a variety of multidimensional DSP systems that have static dataflow structures. In this paper, we develop new methods for optimized implementation of MDSDF graphs on embedded platforms that employ multiple levels of parallelism to enhance performance at different levels of granularity. Our approach allows designers to systematically represent and transform multi-level parallelism specifications from a common, MDSDF-based application level model. We demonstrate our methods with a case study of image histogram implementation on a graphics processing unit (GPU). Experimental results from this study show that our approach can be used to derive fast GPU implementations, and enhance trade-off analysis during design space exploration.
高效GPU实现的多维数据流图建模和映射
多维同步数据流(MDSDF)为各种具有静态数据流结构的多维DSP系统提供了一种有效的计算模型。在本文中,我们开发了在嵌入式平台上优化MDSDF图实现的新方法,该方法采用多层并行性来提高不同粒度级别的性能。我们的方法允许设计人员系统地表示和转换基于mdsdf的通用应用级模型的多级并行性规范。我们用图形处理单元(GPU)上的图像直方图实现的案例研究来演示我们的方法。本研究的实验结果表明,我们的方法可用于推导快速GPU实现,并增强设计空间探索期间的权衡分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信