Simplifying Graph-based Collaborative Filtering for Recommendation

Li He, Xianzhi Wang, Dingxian Wang, Haoyuan Zou, Hongzhi Yin, Guandong Xu
{"title":"Simplifying Graph-based Collaborative Filtering for Recommendation","authors":"Li He, Xianzhi Wang, Dingxian Wang, Haoyuan Zou, Hongzhi Yin, Guandong Xu","doi":"10.1145/3539597.3570451","DOIUrl":null,"url":null,"abstract":"Graph Convolutional Networks (GCNs) are a popular type of machine learning models that use multiple layers of convolutional aggregation operations and non-linear activations to represent data. Recent studies apply GCNs to Collaborative Filtering (CF)-based recommender systems (RSs) by modeling user-item interactions as a bipartite graph and achieve superior performance. However, these models face difficulty in training with non-linear activations on large graphs. Besides, most GCN-based models could not model deeper layers due to the over-smoothing effect with the graph convolution operation. In this paper, we improve the GCN-based CF models from two aspects. First, we remove non-linearities to enhance recommendation performance, which is consistent with the theories in simple graph convolutional networks. Second, we obtain the initialization of the embedding for each node in the graph by computing the network embedding on the condensed graph, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse interaction data. The proposed model is a linear model that is easy to train, scalable to large datasets, and shown to yield better efficiency and effectiveness on four real datasets.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Graph Convolutional Networks (GCNs) are a popular type of machine learning models that use multiple layers of convolutional aggregation operations and non-linear activations to represent data. Recent studies apply GCNs to Collaborative Filtering (CF)-based recommender systems (RSs) by modeling user-item interactions as a bipartite graph and achieve superior performance. However, these models face difficulty in training with non-linear activations on large graphs. Besides, most GCN-based models could not model deeper layers due to the over-smoothing effect with the graph convolution operation. In this paper, we improve the GCN-based CF models from two aspects. First, we remove non-linearities to enhance recommendation performance, which is consistent with the theories in simple graph convolutional networks. Second, we obtain the initialization of the embedding for each node in the graph by computing the network embedding on the condensed graph, which alleviates the over smoothing problem in graph convolution aggregation operation with sparse interaction data. The proposed model is a linear model that is easy to train, scalable to large datasets, and shown to yield better efficiency and effectiveness on four real datasets.
简化基于图的推荐协同过滤
图卷积网络(GCNs)是一种流行的机器学习模型,它使用多层卷积聚合操作和非线性激活来表示数据。最近的研究将GCNs应用于基于协同过滤(CF)的推荐系统(RSs),通过将用户-项目交互建模为二部图,取得了优异的性能。然而,这些模型在大型图上的非线性激活训练中面临困难。此外,大多数基于gcn的模型由于图卷积操作的过度平滑效应而无法对更深的层进行建模。本文从两个方面对基于gcn的CF模型进行了改进。首先,我们去除非线性来提高推荐性能,这与简单图卷积网络中的理论一致。其次,通过计算精简图上的网络嵌入,得到图中各节点嵌入的初始化,缓解了交互数据稀疏的图卷积聚合操作中的过平滑问题;该模型是一种线性模型,易于训练,可扩展到大型数据集,并在四个实际数据集上显示出更好的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信